Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of sqrt(1+x)
derivative\:\sqrt{1+x}
(\partial)/(\partial z)(ze^{xyz})
\frac{\partial\:}{\partial\:z}(ze^{xyz})
(\partial)/(\partial y)(y/(x-y))
\frac{\partial\:}{\partial\:y}(\frac{y}{x-y})
(\partial)/(\partial y)((x+y)^3-12xy)
\frac{\partial\:}{\partial\:y}((x+y)^{3}-12xy)
integral of x*sin(2x^2)
\int\:x\cdot\:\sin(2x^{2})dx
limit as x approaches 0+of x^2e^{1/x}
\lim\:_{x\to\:0+}(x^{2}e^{\frac{1}{x}})
(dy)/(dx)=((1-y^2)/(1-x^2))^{1/2}
\frac{dy}{dx}=(\frac{1-y^{2}}{1-x^{2}})^{\frac{1}{2}}
derivative of 2e^{-2x}+1/3 e^x
\frac{d}{dx}(2e^{-2x}+\frac{1}{3}e^{x})
derivative of 6^{x^2-3}
\frac{d}{dx}(6^{x^{2}-3})
integral from 0 to pi/2 of sin^3(x/2)
\int\:_{0}^{\frac{π}{2}}\sin^{3}(\frac{x}{2})dx
derivative of (x-sqrt(x)/(x^2))
\frac{d}{dx}(\frac{x-\sqrt{x}}{x^{2}})
integral of (x^2)/(x^2-6x+9)
\int\:\frac{x^{2}}{x^{2}-6x+9}dx
tangent of y=(|x|)/(sqrt(5-x^2)),(2,2)
tangent\:y=\frac{\left|x\right|}{\sqrt{5-x^{2}}},(2,2)
derivative of (2x^2-7)/(8x^3+1)
derivative\:\frac{2x^{2}-7}{8x^{3}+1}
derivative of (sqrt(x^2+y^2-9)/x)
\frac{d}{dx}(\frac{\sqrt{x^{2}+y^{2}-9}}{x})
sum from n=1 to infinity}(-1^{n+1 of)/n
\sum\:_{n=1}^{\infty\:}\frac{-1^{n+1}}{n}
integral of x^2cos(1/2 x)
\int\:x^{2}\cos(\frac{1}{2}x)dx
integral from 0 to 1 of 6/(1+t^2)
\int\:_{0}^{1}\frac{6}{1+t^{2}}dt
derivative of (cos(x)/x+x/(cos(x)))
\frac{d}{dx}(\frac{\cos(x)}{x}+\frac{x}{\cos(x)})
derivative of 1/(sqrt(4x^2+1))
derivative\:\frac{1}{\sqrt{4x^{2}+1}}
limit as x approaches 3-of e^{3/(3-x)}
\lim\:_{x\to\:3-}(e^{\frac{3}{3-x}})
limit as x approaches 0+of (x^2)/9-2/x
\lim\:_{x\to\:0+}(\frac{x^{2}}{9}-\frac{2}{x})
integral of 7^x
\int\:7^{x}dx
integral of 1/(x^{1/2)+x^{3/2}}
\int\:\frac{1}{x^{\frac{1}{2}}+x^{\frac{3}{2}}}dx
(\partial)/(\partial x)(5y^2)
\frac{\partial\:}{\partial\:x}(5y^{2})
tangent of f(x)=sqrt(5x^2-29),\at x=3
tangent\:f(x)=\sqrt{5x^{2}-29},\at\:x=3
integral from-infinity to 0 of 13xe^{3x}
\int\:_{-\infty\:}^{0}13xe^{3x}dx
tangent of f(x)=-5-2x^2,(-3,-23)
tangent\:f(x)=-5-2x^{2},(-3,-23)
y^'+e^xy=2e^x
y^{\prime\:}+e^{x}y=2e^{x}
(dy)/(dx)+y=xye^{-4x}
\frac{dy}{dx}+y=xye^{-4x}
integral of sin(θ)e^{cos(θ)}
\int\:\sin(θ)e^{\cos(θ)}dθ
integral from 1 to 3 of sqrt(x)
\int\:_{1}^{3}\sqrt{x}dx
integral of e^{2x}cos(4x)
\int\:e^{2x}\cos(4x)dx
derivative of (ln(x)^{-2})
\frac{d}{dx}((\ln(x))^{-2})
integral of 2x^{1/3}
\int\:2x^{\frac{1}{3}}dx
limit as x approaches infinity of cos(x)
\lim\:_{x\to\:\infty\:}(\cos(x))
y^{''}+12y^'+36y=e^{-5x}(x^2-2x+3)
y^{\prime\:\prime\:}+12y^{\prime\:}+36y=e^{-5x}(x^{2}-2x+3)
derivative of (e^{x-2})/(x-1)
derivative\:\frac{e^{x-2}}{x-1}
sum from n=0 to infinity of 1/((2n)!)
\sum\:_{n=0}^{\infty\:}\frac{1}{(2n)!}
area y=\sqrt[3]{2x},y= 1/8 x^2
area\:y=\sqrt[3]{2x},y=\frac{1}{8}x^{2}
derivative of arctan(sqrt(x^2+2x)+C)
\frac{d}{dx}(\arctan(\sqrt{x^{2}+2x})+C)
integral of x/(sqrt(1+5x^2))
\int\:\frac{x}{\sqrt{1+5x^{2}}}dx
derivative of y=3x^2+1/x
derivative\:y=3x^{2}+\frac{1}{x}
integral of x^e
\int\:x^{e}dx
integral of 2/(e^xsqrt(11+e^{2x))}
\int\:\frac{2}{e^{x}\sqrt{11+e^{2x}}}dx
integral of 7cos^3(3x)
\int\:7\cos^{3}(3x)dx
xy^'+3y=0
xy^{\prime\:}+3y=0
limit as x approaches 0+of 3
\lim\:_{x\to\:0+}(3)
derivative of f(x)=cos(2sin(x))
derivative\:f(x)=\cos(2\sin(x))
derivative of y=ln(e^x+xe^x)
derivative\:y=\ln(e^{x}+xe^{x})
derivative of 3(9x-4^4)
\frac{d}{dx}(3(9x-4)^{4})
integral of x/((x-1)^3)
\int\:\frac{x}{(x-1)^{3}}dx
y^'+2*y=t
y^{\prime\:}+2\cdot\:y=t
derivative of ln(x+sqrt(4+x^2))
\frac{d}{dx}(\ln(x+\sqrt{4+x^{2}}))
(\partial)/(\partial x)(e^xln(xy))
\frac{\partial\:}{\partial\:x}(e^{x}\ln(xy))
derivative of 2x^3-3x^2-12+8
derivative\:2x^{3}-3x^{2}-12+8
sum from n=1 to infinity of 7^nx^{n-1}
\sum\:_{n=1}^{\infty\:}7^{n}x^{n-1}
y^{''}+6y^'+8y=cos(3t),y(0)=-2,y^'(0)=1
y^{\prime\:\prime\:}+6y^{\prime\:}+8y=\cos(3t),y(0)=-2,y^{\prime\:}(0)=1
integral from 6 to 8 of (86)/((x-6)^3)
\int\:_{6}^{8}\frac{86}{(x-6)^{3}}dx
(\partial)/(\partial x)(2x^4y^2+3x^2y^4)
\frac{\partial\:}{\partial\:x}(2x^{4}y^{2}+3x^{2}y^{4})
integral of (cos(e^{-x}))/(e^{2x)}
\int\:\frac{\cos(e^{-x})}{e^{2x}}dx
sum from k=1 to infinity of (4k)/(7k-1)
\sum\:_{k=1}^{\infty\:}\frac{4k}{7k-1}
laplacetransform 5cos(2t)
laplacetransform\:5\cos(2t)
integral from 1 to 0 of x^2
\int\:_{1}^{0}x^{2}dx
derivative of sin^3(2x+x^2)
\frac{d}{dx}(\sin^{3}(2x)+x^{2})
y^{''}-4y+3y=0
y^{\prime\:\prime\:}-4y+3y=0
integral of (5x^2+2x)/(x^2-5x-6)
\int\:\frac{5x^{2}+2x}{x^{2}-5x-6}dx
(dy}{dx}=\frac{y(ln(y)-ln(x)+1))/x
\frac{dy}{dx}=\frac{y(\ln(y)-\ln(x)+1)}{x}
area 2x,x^2-3
area\:2x,x^{2}-3
integral from-2 to 3 of 2xsqrt(2x^2-3)
\int\:_{-2}^{3}2x\sqrt{2x^{2}-3}dx
(\partial}{\partial t}(\frac{r+s)/t)
\frac{\partial\:}{\partial\:t}(\frac{r+s}{t})
integral of (sqrt(5x)+sqrt(5/x))
\int\:(\sqrt{5x}+\sqrt{\frac{5}{x}})dx
(\partial)/(\partial x)(x^2-xy+2y^2)
\frac{\partial\:}{\partial\:x}(x^{2}-xy+2y^{2})
implicit y^2=x^2-xc
implicit\:y^{2}=x^{2}-xc
derivative of (5x/(1+x^2))
\frac{d}{dx}(\frac{5x}{1+x^{2}})
limit as x approaches 1 of x/(4x-1)
\lim\:_{x\to\:1}(\frac{x}{4x-1})
tangent of f(x)=x^2,(-4,15)
tangent\:f(x)=x^{2},(-4,15)
derivative of (8x^2-16x+16)e^x
derivative\:(8x^{2}-16x+16)e^{x}
limit as x approaches 1 of ln(e^x-1)
\lim\:_{x\to\:1}(\ln(e^{x}-1))
derivative of ((x+2)/((x+1)))
\frac{d}{dx}(\frac{(x+2)}{(x+1)})
integral of (1-e^{-x})
\int\:(1-e^{-x})dx
(d^2y)/(dx^2)-3(dy)/(dx)+2y=10sin(x)
\frac{d^{2}y}{dx^{2}}-3\frac{dy}{dx}+2y=10\sin(x)
integral of 2sin(sqrt(x))
\int\:2\sin(\sqrt{x})dx
limit as x approaches 1 of-2x^2+5x+4
\lim\:_{x\to\:1}(-2x^{2}+5x+4)
derivative of (x^2/(x^2+y^2))
\frac{d}{dx}(\frac{x^{2}}{x^{2}+y^{2}})
derivative of sin^{1/2}(x)
\frac{d}{dx}(\sin^{\frac{1}{2}}(x))
derivative of 10x+9x^2+3y
\frac{d}{dx}(10x+9x^{2}+3y)
implicit (dy)/(dx),y=arcsin(2x+1)
implicit\:\frac{dy}{dx},y=\arcsin(2x+1)
taylor e^{(t^2)/2}
taylor\:e^{\frac{t^{2}}{2}}
(\partial)/(\partial x)(((xy^2))/(x^2+y^2))
\frac{\partial\:}{\partial\:x}(\frac{(xy^{2})}{x^{2}+y^{2}})
integral of (csc^2(2x))/(4-cot(2x))
\int\:\frac{\csc^{2}(2x)}{4-\cot(2x)}dx
integral from-1 to 1 of x(1-x^2)
\int\:_{-1}^{1}x(1-x^{2})dx
integral of sin^2(x)cos(nx)
\int\:\sin^{2}(x)\cos(nx)dx
derivative of (cos(sqrt(x))/(2sqrt(x)))
\frac{d}{dx}(\frac{\cos(\sqrt{x})}{2\sqrt{x}})
tangent of f(x)=9-3x+2x^2,\at x=-6
tangent\:f(x)=9-3x+2x^{2},\at\:x=-6
derivative of 2x-3x^{2/3}
\frac{d}{dx}(2x-3x^{\frac{2}{3}})
integral of 25e^{-2x}
\int\:25e^{-2x}dx
limit as x approaches 3-of x-2
\lim\:_{x\to\:3-}(x-2)
limit as x approaches pi/2-of cot(2x)
\lim\:_{x\to\:\frac{π}{2}-}(\cot(2x))
(dy)/(dx)=x^3y
\frac{dy}{dx}=x^{3}y
1
..
667
668
669
670
671
..
2459