Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=ln(((|x|-1))/(x^2-2))
domain\:f(x)=\ln(\frac{(\left|x\right|-1)}{x^{2}-2})
domain of f(x)= 3/(sqrt(x-13))
domain\:f(x)=\frac{3}{\sqrt{x-13}}
range of 2x^2+5x+10
range\:2x^{2}+5x+10
symmetry y=x^2+4x+2
symmetry\:y=x^{2}+4x+2
asymptotes of f(x)=(x-8)/(x^2-64)
asymptotes\:f(x)=\frac{x-8}{x^{2}-64}
intercepts of y=1-x^2
intercepts\:y=1-x^{2}
simplify (2.1)(-6.7)
simplify\:(2.1)(-6.7)
inverse of f(x)=(2x-1)^2
inverse\:f(x)=(2x-1)^{2}
line (6,25.4),(19,24.1)
line\:(6,25.4),(19,24.1)
domain of f(x)=sqrt(-x+6)
domain\:f(x)=\sqrt{-x+6}
midpoint (3,-2),(8,-5)
midpoint\:(3,-2),(8,-5)
inverse of y=e^{5x}
inverse\:y=e^{5x}
range of-3/x
range\:-\frac{3}{x}
slope ofintercept x-y=-4
slopeintercept\:x-y=-4
midpoint (-4,6),(4,-2)
midpoint\:(-4,6),(4,-2)
extreme f(x)=(x+4)^{2/3}-1
extreme\:f(x)=(x+4)^{\frac{2}{3}}-1
domain of 1/(sqrt(x^4-5x^2+4))
domain\:\frac{1}{\sqrt{x^{4}-5x^{2}+4}}
range of f(x)=2cos(3x)
range\:f(x)=2\cos(3x)
domain of x/(sqrt(9-x^2))
domain\:\frac{x}{\sqrt{9-x^{2}}}
intercepts of y=4x+2
intercepts\:y=4x+2
symmetry (x+5)^2-4
symmetry\:(x+5)^{2}-4
intercepts of y= 4/3 x-2
intercepts\:y=\frac{4}{3}x-2
perpendicular 2x-3y=8
perpendicular\:2x-3y=8
inverse of (-1)/x-1
inverse\:\frac{-1}{x}-1
inverse of f(x)=3x-10
inverse\:f(x)=3x-10
domain of 3/((3/x))
domain\:\frac{3}{(\frac{3}{x})}
asymptotes of sqrt(5-x)
asymptotes\:\sqrt{5-x}
domain of f(x)=sqrt(5x-3)
domain\:f(x)=\sqrt{5x-3}
parity 7^xsec(4x)
parity\:7^{x}\sec(4x)
intercepts of-3x+4
intercepts\:-3x+4
simplify (3.4)(2.2)
simplify\:(3.4)(2.2)
extreme f(x)= 3/(x+2)
extreme\:f(x)=\frac{3}{x+2}
f(x)=x^2+1
f(x)=x^{2}+1
extreme f(x)=x^3-4x^2-3x+9
extreme\:f(x)=x^{3}-4x^{2}-3x+9
periodicity of cos(2x+5)
periodicity\:\cos(2x+5)
midpoint (4,1),(-2,-1)
midpoint\:(4,1),(-2,-1)
domain of f(x)=x+1/x
domain\:f(x)=x+\frac{1}{x}
domain of f(x)=-3(a-1)
domain\:f(x)=-3(a-1)
inverse of y=2-1/2 x
inverse\:y=2-\frac{1}{2}x
domain of f(x)=sqrt(-x+3)
domain\:f(x)=\sqrt{-x+3}
slope of-8/5 (o10)
slope\:-\frac{8}{5}(o10)
slope ofintercept x+3y-3=0
slopeintercept\:x+3y-3=0
slope ofintercept 0
slopeintercept\:0
intercepts of f(x)=64-x^2
intercepts\:f(x)=64-x^{2}
inverse of f(x)=(3x)/((1-5x))
inverse\:f(x)=\frac{3x}{(1-5x)}
inverse of (x-2)/(x+2)
inverse\:\frac{x-2}{x+2}
extreme f(x)=3x^4-4x^3-12x^2
extreme\:f(x)=3x^{4}-4x^{3}-12x^{2}
extreme f(x)=4x^3-45x^2+150x
extreme\:f(x)=4x^{3}-45x^{2}+150x
domain of f(x)=|2x+5|-1
domain\:f(x)=\left|2x+5\right|-1
domain of f(x)=y^6+5y^4-6y^2
domain\:f(x)=y^{6}+5y^{4}-6y^{2}
amplitude of 5cos(x/6)
amplitude\:5\cos(\frac{x}{6})
inverse of f(x)= x/4+2
inverse\:f(x)=\frac{x}{4}+2
domain of f(x)=sqrt(-7x+28)
domain\:f(x)=\sqrt{-7x+28}
critical f(x)=-4x-9
critical\:f(x)=-4x-9
domain of f(x)= 1/(3x-6)
domain\:f(x)=\frac{1}{3x-6}
domain of f(x)=13x-2
domain\:f(x)=13x-2
inverse of f(x)=(6x-8)/(7-x)
inverse\:f(x)=\frac{6x-8}{7-x}
asymptotes of 3/4 (x^2-1)^{2/3}
asymptotes\:\frac{3}{4}(x^{2}-1)^{\frac{2}{3}}
inverse of f(x)= x/(sqrt(x^2+7))
inverse\:f(x)=\frac{x}{\sqrt{x^{2}+7}}
inverse of \sqrt[3]{x}+3
inverse\:\sqrt[3]{x}+3
midpoint (7,4),(-1,-4)
midpoint\:(7,4),(-1,-4)
parity 2t
parity\:2t
intercepts of f(x)=4x^2-8x+2
intercepts\:f(x)=4x^{2}-8x+2
domain of f(x)=(x+5)/((x^2-10x+25))
domain\:f(x)=\frac{x+5}{(x^{2}-10x+25)}
domain of (3-x^2)/(x^2+4x-45)
domain\:\frac{3-x^{2}}{x^{2}+4x-45}
domain of f(x)=x^2-10x+21
domain\:f(x)=x^{2}-10x+21
intercepts of f(x)=x^4+18x^2+81
intercepts\:f(x)=x^{4}+18x^{2}+81
range of f(X)=log_{3}(1/9)
range\:f(X)=\log_{3}(\frac{1}{9})
domain of (x^2-5x+4)/(x+1)
domain\:\frac{x^{2}-5x+4}{x+1}
parity-x^3+3x^2+10x
parity\:-x^{3}+3x^{2}+10x
domain of f(x)=-2sqrt(x+4)-1
domain\:f(x)=-2\sqrt{x+4}-1
0=6.3+0(1.188-0) 1/2 x(1.188-0)^2
0=6.3+0(1.188-0)\frac{1}{2}x(1.188-0)^{2}
inverse of \sqrt[3]{x-6}
inverse\:\sqrt[3]{x-6}
monotone 3xsqrt(2x^2+3)
monotone\:3x\sqrt{2x^{2}+3}
asymptotes of-(2x)/(x^2+4)
asymptotes\:-\frac{2x}{x^{2}+4}
extreme xsqrt(x+1)
extreme\:x\sqrt{x+1}
parity f(x)=5x^4-4x^3
parity\:f(x)=5x^{4}-4x^{3}
inverse of f(x)=(x+4)^2-4
inverse\:f(x)=(x+4)^{2}-4
inverse of f(x)=-4x-7
inverse\:f(x)=-4x-7
slope of 4x-3y=15
slope\:4x-3y=15
intercepts of 4/(x^2+x-2)
intercepts\:\frac{4}{x^{2}+x-2}
symmetry 7y=5x^2-4
symmetry\:7y=5x^{2}-4
domain of y= 5/(x^2-1)
domain\:y=\frac{5}{x^{2}-1}
inverse of f(x)=sqrt(x^2+2)
inverse\:f(x)=\sqrt{x^{2}+2}
intercepts of (4x+8)/(3x-2)
intercepts\:\frac{4x+8}{3x-2}
inverse of f(x)=-4x+8
inverse\:f(x)=-4x+8
range of 3^{1/x}
range\:3^{\frac{1}{x}}
asymptotes of f(x)=tan(x+((7pi)/6))
asymptotes\:f(x)=\tan(x+(\frac{7π}{6}))
domain of f(x)=x^2-9x+3
domain\:f(x)=x^{2}-9x+3
range of f(x)= 4/(x^2+1)
range\:f(x)=\frac{4}{x^{2}+1}
domain of f(x)=ln|2x-3|
domain\:f(x)=\ln\left|2x-3\right|
inverse of sqrt(49-x^2)
inverse\:\sqrt{49-x^{2}}
symmetry 2(x+3)^2-1
symmetry\:2(x+3)^{2}-1
range of f(x)=x^4-2x^3+x-1
range\:f(x)=x^{4}-2x^{3}+x-1
domain of x^2-2x-15
domain\:x^{2}-2x-15
domain of f(x)=(x/(x+2))/(x/(x+2)+2)
domain\:f(x)=\frac{\frac{x}{x+2}}{\frac{x}{x+2}+2}
asymptotes of h(t)=(t^2-4t)/(t^4-256)
asymptotes\:h(t)=\frac{t^{2}-4t}{t^{4}-256}
slope ofintercept 3x+12y=24
slopeintercept\:3x+12y=24
intercepts of f(x)=3x-4
intercepts\:f(x)=3x-4
critical f(x)= x/(x^2+16x+60)
critical\:f(x)=\frac{x}{x^{2}+16x+60}
1
..
147
148
149
150
151
..
1324