Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
extreme f(x)=(x^3)/3-4x
extreme\:f(x)=\frac{x^{3}}{3}-4x
domain of f(x)=(sqrt(x))/(6x^2+5x-1)
domain\:f(x)=\frac{\sqrt{x}}{6x^{2}+5x-1}
intercepts of f(x)=(3x)/(x+5)
intercepts\:f(x)=\frac{3x}{x+5}
slope of y=5x-9
slope\:y=5x-9
f(x)=x^2+5x+6
f(x)=x^{2}+5x+6
domain of (x^2-4)/(x^3)
domain\:\frac{x^{2}-4}{x^{3}}
inverse of (3-2x)/(3x+4)
inverse\:\frac{3-2x}{3x+4}
inverse of f(x)=-3x+3+sqrt(18x-18)
inverse\:f(x)=-3x+3+\sqrt{18x-18}
inverse of f(x)=5-2x^3
inverse\:f(x)=5-2x^{3}
domain of f(x)=25x-6
domain\:f(x)=25x-6
slope ofintercept 3x+2y=8
slopeintercept\:3x+2y=8
domain of sqrt(5x+35)
domain\:\sqrt{5x+35}
domain of f(x)=(sqrt(3-x))/(x^2-6x+8)
domain\:f(x)=\frac{\sqrt{3-x}}{x^{2}-6x+8}
inverse of f(x)=3x^3+8
inverse\:f(x)=3x^{3}+8
inverse of f(x)= x/(3x+1)
inverse\:f(x)=\frac{x}{3x+1}
amplitude of y=-4cos(2x)
amplitude\:y=-4\cos(2x)
range of f(x)=-1/2 x^2+5x-2
range\:f(x)=-\frac{1}{2}x^{2}+5x-2
domain of f(x)=(sqrt(x+8))/(x-5)
domain\:f(x)=\frac{\sqrt{x+8}}{x-5}
inverse of f(x)=6x^{1/4}+8
inverse\:f(x)=6x^{\frac{1}{4}}+8
domain of-x/(x-8)
domain\:-\frac{x}{x-8}
line (3,-4),(-1,4)
line\:(3,-4),(-1,4)
critical f(x)=sin(pix)
critical\:f(x)=\sin(πx)
critical x^4-2x^2+3
critical\:x^{4}-2x^{2}+3
critical sqrt(1-x^2)
critical\:\sqrt{1-x^{2}}
range of f(x)=sqrt(x-2)
range\:f(x)=\sqrt{x-2}
critical 4x^3-18x^2+3
critical\:4x^{3}-18x^{2}+3
asymptotes of f(x)=2sec(2x)
asymptotes\:f(x)=2\sec(2x)
intercepts of f(x)=5x^2+4x-1
intercepts\:f(x)=5x^{2}+4x-1
domain of f(x)=x^3-4x+7
domain\:f(x)=x^{3}-4x+7
domain of f(x)=125x+1200
domain\:f(x)=125x+1200
monotone f(x)=5x^{4/7}-x^{5/7}
monotone\:f(x)=5x^{\frac{4}{7}}-x^{\frac{5}{7}}
asymptotes of (x^3)/(x^2-4x-5)
asymptotes\:\frac{x^{3}}{x^{2}-4x-5}
critical g(x)=(x^3)/((x+1))
critical\:g(x)=\frac{x^{3}}{(x+1)}
inverse of 4/(x+3)
inverse\:\frac{4}{x+3}
slope ofintercept y-5=-1/5 (x-1)
slopeintercept\:y-5=-\frac{1}{5}(x-1)
asymptotes of x^2+x+2
asymptotes\:x^{2}+x+2
periodicity of-1/4 cos(-1/4 x)
periodicity\:-\frac{1}{4}\cos(-\frac{1}{4}x)
range of f(x)=(4e^x)/(1+2e^x)
range\:f(x)=\frac{4e^{x}}{1+2e^{x}}
range of 7/(x-4)
range\:\frac{7}{x-4}
midpoint (3,-1),(-5,-3)
midpoint\:(3,-1),(-5,-3)
asymptotes of f(x)=(-3x^2-12x)/(2x+8)
asymptotes\:f(x)=\frac{-3x^{2}-12x}{2x+8}
range of (x+6)/(2x-4)
range\:\frac{x+6}{2x-4}
domain of 2log_{2}(x)+6
domain\:2\log_{2}(x)+6
parity f(x)=2x+3
parity\:f(x)=2x+3
inverse of f(x)=(x^2-3)/5
inverse\:f(x)=\frac{x^{2}-3}{5}
extreme x^2+12x+11
extreme\:x^{2}+12x+11
parity f(x)=x^3+4x
parity\:f(x)=x^{3}+4x
symmetry y=-2x^2+8
symmetry\:y=-2x^{2}+8
extreme f(x)=xe^{-6x}
extreme\:f(x)=xe^{-6x}
asymptotes of y=(1/2)^x+1
asymptotes\:y=(\frac{1}{2})^{x}+1
domain of f(x)=2sqrt(-(x-1))+2
domain\:f(x)=2\sqrt{-(x-1)}+2
domain of f(x)=x+sqrt(x)+2
domain\:f(x)=x+\sqrt{x}+2
distance (0,0),(2,4)
distance\:(0,0),(2,4)
asymptotes of y=(x+3)/x
asymptotes\:y=\frac{x+3}{x}
extreme f(x)=x^3-2x^2-15x+2
extreme\:f(x)=x^{3}-2x^{2}-15x+2
domain of f(x)=e^{-3x}
domain\:f(x)=e^{-3x}
domain of f(x)=sqrt(1+x)
domain\:f(x)=\sqrt{1+x}
range of f(x)= 1/(5+e^{2x)}
range\:f(x)=\frac{1}{5+e^{2x}}
range of 3x^4-15
range\:3x^{4}-15
asymptotes of f(x)=(13x^2)/(7x^2+6)
asymptotes\:f(x)=\frac{13x^{2}}{7x^{2}+6}
slope of y= 1/2 x+2
slope\:y=\frac{1}{2}x+2
inverse of f(x)=(4x)/(x^2+81)
inverse\:f(x)=\frac{4x}{x^{2}+81}
midpoint (sqrt(18),1),(sqrt(2),-1)
midpoint\:(\sqrt{18},1),(\sqrt{2},-1)
inverse of f(x)=ln(7x),x>0
inverse\:f(x)=\ln(7x),x>0
range of y=-ln(-x),-1<x<0
range\:y=-\ln(-x),-1<x<0
asymptotes of (x^2-x-6)/(2x+4)
asymptotes\:\frac{x^{2}-x-6}{2x+4}
domain of f(x)=2x^2+9x-3
domain\:f(x)=2x^{2}+9x-3
inverse of f(x)=9+2\sqrt[3]{x}
inverse\:f(x)=9+2\sqrt[3]{x}
domain of 1/(sqrt(x+1))
domain\:\frac{1}{\sqrt{x+1}}
inflection (x^2+6)(36-x^2)
inflection\:(x^{2}+6)(36-x^{2})
inverse of x^2+2x+2
inverse\:x^{2}+2x+2
intercepts of f(x)=-3x+3y=-9
intercepts\:f(x)=-3x+3y=-9
shift f(x)=cos(2x+pi)
shift\:f(x)=\cos(2x+π)
domain of f(x)=4x^2+2x-1
domain\:f(x)=4x^{2}+2x-1
inverse of f(x)= 1/4 x^2
inverse\:f(x)=\frac{1}{4}x^{2}
simplify (3.4)(0)
simplify\:(3.4)(0)
critical f(x)=x^3-3x-2
critical\:f(x)=x^{3}-3x-2
asymptotes of g(t)=(13)/(1+3^{-t)}
asymptotes\:g(t)=\frac{13}{1+3^{-t}}
intercepts of f(x)=(x-1)^2-4
intercepts\:f(x)=(x-1)^{2}-4
critical f(x)=(x-8)^3
critical\:f(x)=(x-8)^{3}
domain of f(x)=(10)/(x^2-2x)
domain\:f(x)=\frac{10}{x^{2}-2x}
domain of f(x)=12x+2
domain\:f(x)=12x+2
range of (x-7)/(12x+2)
range\:\frac{x-7}{12x+2}
domain of (x+2)/(x^3-3)
domain\:\frac{x+2}{x^{3}-3}
inverse of y=3x+12
inverse\:y=3x+12
line (-3,-4),(0,-3)
line\:(-3,-4),(0,-3)
domain of f(x)= x/(7x+36)
domain\:f(x)=\frac{x}{7x+36}
asymptotes of ((x^3+6x^2+9x))/(x+3)
asymptotes\:\frac{(x^{3}+6x^{2}+9x)}{x+3}
inverse of f(x)=x^2-4x+5
inverse\:f(x)=x^{2}-4x+5
distance (0,-2),(4,2)
distance\:(0,-2),(4,2)
parity f(x)=-x^2+2x-4
parity\:f(x)=-x^{2}+2x-4
domain of ln(x^2-9)
domain\:\ln(x^{2}-9)
parity f(x)=(1/(x^5+x+1))
parity\:f(x)=(\frac{1}{x^{5}+x+1})
inverse of 1/(cos^2(x))
inverse\:\frac{1}{\cos^{2}(x)}
asymptotes of f(x)=(3x-3)/(-x^2+2x-1)
asymptotes\:f(x)=\frac{3x-3}{-x^{2}+2x-1}
asymptotes of ln(x-5)
asymptotes\:\ln(x-5)
midpoint (-1,1),(-10,-5)
midpoint\:(-1,1),(-10,-5)
domain of f(x)=(x^3)/3
domain\:f(x)=\frac{x^{3}}{3}
periodicity of f(x)=sin(x/6)
periodicity\:f(x)=\sin(\frac{x}{6})
range of (12-x-x^2)/(|x-3|)
range\:\frac{12-x-x^{2}}{\left|x-3\right|}
1
..
150
151
152
153
154
..
1324