Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=2(x-1)^2+7
inverse\:f(x)=2(x-1)^{2}+7
critical f(x)=2(3-x)
critical\:f(x)=2(3-x)
midpoint (0,2),(-3, 3/2)
midpoint\:(0,2),(-3,\frac{3}{2})
asymptotes of f(x)=(x^2-x-6)/(x^2-6x+8)
asymptotes\:f(x)=\frac{x^{2}-x-6}{x^{2}-6x+8}
critical f(x)=(e^x)/(x-1)
critical\:f(x)=\frac{e^{x}}{x-1}
domain of f(x)=(2x^2-x-8)/(x^2+9)
domain\:f(x)=\frac{2x^{2}-x-8}{x^{2}+9}
domain of f(x)= 1/(sqrt(6-x))
domain\:f(x)=\frac{1}{\sqrt{6-x}}
domain of f(x)=(x^2)/(x^2+x-90)
domain\:f(x)=\frac{x^{2}}{x^{2}+x-90}
inverse of f(x)= 6/((x-9))
inverse\:f(x)=\frac{6}{(x-9)}
periodicity of f(x)=8sin(2x)
periodicity\:f(x)=8\sin(2x)
inflection (e^x)/(3+e^x)
inflection\:\frac{e^{x}}{3+e^{x}}
domain of sqrt(x-1)sqrt(1-x)
domain\:\sqrt{x-1}\sqrt{1-x}
domain of (x+4)/(x^2-25)
domain\:\frac{x+4}{x^{2}-25}
inverse of f(x)=(x-3)^2-4
inverse\:f(x)=(x-3)^{2}-4
inverse of f(x)=-2cos(3x)
inverse\:f(x)=-2\cos(3x)
asymptotes of f(x)=(x^2+7x+8)/(x+3)
asymptotes\:f(x)=\frac{x^{2}+7x+8}{x+3}
periodicity of f(x)=cos((23pi)/6)
periodicity\:f(x)=\cos(\frac{23π}{6})
slope of 6y-3x=-24
slope\:6y-3x=-24
domain of f(x)= 1/(sqrt(5-x))
domain\:f(x)=\frac{1}{\sqrt{5-x}}
asymptotes of f(x)=(x^2+3x+2)/(x-1)
asymptotes\:f(x)=\frac{x^{2}+3x+2}{x-1}
midpoint (2,4),(-4,-2)
midpoint\:(2,4),(-4,-2)
inverse of f(x)=0.25x+5.2
inverse\:f(x)=0.25x+5.2
domain of f(x)=sqrt(x^3-9x)
domain\:f(x)=\sqrt{x^{3}-9x}
intercepts of (x^2-25)/(-2x^2+9x+5)
intercepts\:\frac{x^{2}-25}{-2x^{2}+9x+5}
monotone f(x)=(8x^2)/(x-6)
monotone\:f(x)=\frac{8x^{2}}{x-6}
domain of (x+8)/(x^2+x-56)
domain\:\frac{x+8}{x^{2}+x-56}
asymptotes of f(x)=((x+4))/((x-3))
asymptotes\:f(x)=\frac{(x+4)}{(x-3)}
asymptotes of f(x)= 5/(x-1)
asymptotes\:f(x)=\frac{5}{x-1}
intercepts of f(x)=(2x^2-5x+2)/(x^2-4)
intercepts\:f(x)=\frac{2x^{2}-5x+2}{x^{2}-4}
perpendicular 7,-4
perpendicular\:7,-4
perpendicular y=2x,(1,2)
perpendicular\:y=2x,(1,2)
slope of y=8x+10
slope\:y=8x+10
inverse of y=e^{x+3}
inverse\:y=e^{x+3}
inverse of x^2-2
inverse\:x^{2}-2
asymptotes of f(x)=(4x^2)/(x^2+4)
asymptotes\:f(x)=\frac{4x^{2}}{x^{2}+4}
range of f(x)=-x/(x^2-4)
range\:f(x)=-\frac{x}{x^{2}-4}
domain of-x^2-4x+4
domain\:-x^{2}-4x+4
asymptotes of f(x)=((x^2+1))/(3x-2x^2)
asymptotes\:f(x)=\frac{(x^{2}+1)}{3x-2x^{2}}
inverse of f(x)=(-3)/(x+4)
inverse\:f(x)=\frac{-3}{x+4}
monotone f(x)=(x^2)/(x-2)
monotone\:f(x)=\frac{x^{2}}{x-2}
domain of f(x)=-3/2+1
domain\:f(x)=-\frac{3}{2}+1
range of f(x)=(x^3)/(x^4)
range\:f(x)=\frac{x^{3}}{x^{4}}
inverse of f(x)=(4x+5)/(2-5x)
inverse\:f(x)=\frac{4x+5}{2-5x}
range of 1/(2x+4)
range\:\frac{1}{2x+4}
inverse of f(x)=((x-2)/7)^{1/3}
inverse\:f(x)=(\frac{x-2}{7})^{\frac{1}{3}}
extreme f(x)=36x+9/x
extreme\:f(x)=36x+\frac{9}{x}
domain of f(x)= 1/(x^2-x-90)
domain\:f(x)=\frac{1}{x^{2}-x-90}
inverse of f(x)=((x-1))/((x+2))
inverse\:f(x)=\frac{(x-1)}{(x+2)}
domain of f(x)=(x+7)/(x^2-x-56)
domain\:f(x)=\frac{x+7}{x^{2}-x-56}
slope ofintercept 0.5*80+25
slopeintercept\:0.5\cdot\:80+25
inverse of f(x)=65
inverse\:f(x)=65
inverse of f(x)= 1/2*2^x
inverse\:f(x)=\frac{1}{2}\cdot\:2^{x}
asymptotes of f(x)=(x^2+2x+1)/(3x^2-x-4)
asymptotes\:f(x)=\frac{x^{2}+2x+1}{3x^{2}-x-4}
parallel y=-10x
parallel\:y=-10x
asymptotes of (-4)/(x^2)+1
asymptotes\:\frac{-4}{x^{2}}+1
inverse of y=sqrt(2x-1)
inverse\:y=\sqrt{2x-1}
inverse of f(x)=log_{5}(-2x^4)
inverse\:f(x)=\log_{5}(-2x^{4})
extreme 4x^{1/3}-x^{4/3}
extreme\:4x^{\frac{1}{3}}-x^{\frac{4}{3}}
inverse of f(x)=5-2e^x
inverse\:f(x)=5-2e^{x}
critical xln(5x)
critical\:x\ln(5x)
range of x^3+2x^2-x+4
range\:x^{3}+2x^{2}-x+4
range of f(x)=((x+1))/((2x+1))
range\:f(x)=\frac{(x+1)}{(2x+1)}
critical f(x)=1+3/x+2/(x^2)
critical\:f(x)=1+\frac{3}{x}+\frac{2}{x^{2}}
intercepts of f(x)=x^2+5x
intercepts\:f(x)=x^{2}+5x
slope ofintercept 2x+3y=-12
slopeintercept\:2x+3y=-12
range of sqrt(5/x+6)
range\:\sqrt{\frac{5}{x}+6}
inverse of f(v)=(2v-7)^2
inverse\:f(v)=(2v-7)^{2}
domain of \sqrt[4]{x^4-16}
domain\:\sqrt[4]{x^{4}-16}
distance (m,n),(0,0)
distance\:(m,n),(0,0)
midpoint (6,-5),(3,1)
midpoint\:(6,-5),(3,1)
extreme f(x)=2x^3-3x^2-72x+3
extreme\:f(x)=2x^{3}-3x^{2}-72x+3
range of log_{3}(x+6)
range\:\log_{3}(x+6)
inverse of f(x)=(6^x)/3
inverse\:f(x)=\frac{6^{x}}{3}
intercepts of f(x)=-3x^2-24x-47
intercepts\:f(x)=-3x^{2}-24x-47
line m
line\:m
inverse of X^3
inverse\:X^{3}
inverse of f(x)= 8/(5x-7)
inverse\:f(x)=\frac{8}{5x-7}
inverse of f(x)=(x+1)/(x+2)
inverse\:f(x)=\frac{x+1}{x+2}
slope ofintercept 4x+2y=2
slopeintercept\:4x+2y=2
inverse of e^{x+2}
inverse\:e^{x+2}
inverse of 7x-2
inverse\:7x-2
slope ofintercept x=2y
slopeintercept\:x=2y
inverse of f(x)=sqrt(4-x)+5
inverse\:f(x)=\sqrt{4-x}+5
inverse of f(x)=1.21x
inverse\:f(x)=1.21x
intercepts of-log_{2}(3x-5)
intercepts\:-\log_{2}(3x-5)
intercepts of f(x)=x^2-6x
intercepts\:f(x)=x^{2}-6x
range of x^4
range\:x^{4}
intercepts of 2x^3-4x^2-38x+76
intercepts\:2x^{3}-4x^{2}-38x+76
parity f(x)=(8x)/(1-tan(x))
parity\:f(x)=\frac{8x}{1-\tan(x)}
critical x/(x^2+1)
critical\:\frac{x}{x^{2}+1}
inverse of f(x)=0.5
inverse\:f(x)=0.5
simplify (-5.9)(35.18)
simplify\:(-5.9)(35.18)
intercepts of f(x)=x^2-6x+5
intercepts\:f(x)=x^{2}-6x+5
range of (2x+3)/(x+2)
range\:\frac{2x+3}{x+2}
inverse of log_{5}(x+2)
inverse\:\log_{5}(x+2)
inverse of f(x)=\sqrt[3]{-x+3}
inverse\:f(x)=\sqrt[3]{-x+3}
asymptotes of 3/(x^2-16)
asymptotes\:\frac{3}{x^{2}-16}
range of x^2+x-2
range\:x^{2}+x-2
domain of 1/(\sqrt[4]{x^2-3x)}
domain\:\frac{1}{\sqrt[4]{x^{2}-3x}}
intercepts of (x+1)/(2x-1)
intercepts\:\frac{x+1}{2x-1}
1
..
151
152
153
154
155
..
1324