Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=x+16
inverse\:f(x)=x+16
intercepts of (x-9)/2
intercepts\:\frac{x-9}{2}
parity arccot(tan(θ))
parity\:\arccot(\tan(θ))
intercepts of x^4-8x^2+15
intercepts\:x^{4}-8x^{2}+15
range of f(x)=-2\sqrt[3]{x-2}+1
range\:f(x)=-2\sqrt[3]{x-2}+1
domain of f(x)=sqrt((x^2+x+1)/(x^3-x))
domain\:f(x)=\sqrt{\frac{x^{2}+x+1}{x^{3}-x}}
asymptotes of f(x)=(x^2+x-6)/(x^2+6x+9)
asymptotes\:f(x)=\frac{x^{2}+x-6}{x^{2}+6x+9}
domain of f(x)=(x^2-4x)/(x^2-16)x=3.9
domain\:f(x)=\frac{x^{2}-4x}{x^{2}-16}x=3.9
range of 2x-4
range\:2x-4
inverse of f(x)=x^2-2x-15
inverse\:f(x)=x^{2}-2x-15
inverse of f(x)=2\sqrt[3]{x}-4
inverse\:f(x)=2\sqrt[3]{x}-4
critical (0.23x)/(x^2+25)
critical\:\frac{0.23x}{x^{2}+25}
periodicity of f(x)=sin((2pix)/3-3pi)
periodicity\:f(x)=\sin(\frac{2πx}{3}-3π)
inverse of f(x)= 1/2 x-4
inverse\:f(x)=\frac{1}{2}x-4
domain of f(x)=(x^3+5x^2)/(7x^2-3)
domain\:f(x)=\frac{x^{3}+5x^{2}}{7x^{2}-3}
amplitude of f(x)=-4cos(x)+4
amplitude\:f(x)=-4\cos(x)+4
asymptotes of (-3)/(x-2)-1
asymptotes\:\frac{-3}{x-2}-1
domain of f(x)=(x+3)/(8-x)
domain\:f(x)=\frac{x+3}{8-x}
extreme x^4-4x^3+10
extreme\:x^{4}-4x^{3}+10
inflection y=-x^3+12x-16
inflection\:y=-x^{3}+12x-16
distance (6,-2),(-5,5)
distance\:(6,-2),(-5,5)
parallel 2x-4y+5=0,(-2,4)
parallel\:2x-4y+5=0,(-2,4)
domain of sqrt(1+2/x)
domain\:\sqrt{1+\frac{2}{x}}
inverse of f(x)=-2/3 x-8
inverse\:f(x)=-\frac{2}{3}x-8
inverse of f(x)=(-3-2x)/3
inverse\:f(x)=\frac{-3-2x}{3}
asymptotes of f(x)= 5/(x-2)+7
asymptotes\:f(x)=\frac{5}{x-2}+7
inverse of f(x)=1-x/6
inverse\:f(x)=1-\frac{x}{6}
domain of f(x)=(2-x^3)/(sqrt(9-x^2))
domain\:f(x)=\frac{2-x^{3}}{\sqrt{9-x^{2}}}
domain of 1/(sqrt(x^2-3x))
domain\:\frac{1}{\sqrt{x^{2}-3x}}
intercepts of f(x)=x^9-9x
intercepts\:f(x)=x^{9}-9x
domain of 3^{x/(x-3)}
domain\:3^{\frac{x}{x-3}}
range of f(x)=x^2-1
range\:f(x)=x^{2}-1
domain of (5x+1)/(x^2-x-1)
domain\:\frac{5x+1}{x^{2}-x-1}
range of f(x)= 2/(sqrt(x))
range\:f(x)=\frac{2}{\sqrt{x}}
range of 2/3 |x+4|
range\:\frac{2}{3}\left|x+4\right|
inflection cos(x)
inflection\:\cos(x)
domain of (2x)/(x^2-16)
domain\:\frac{2x}{x^{2}-16}
domain of (x+1)/(3x-8)
domain\:\frac{x+1}{3x-8}
slope of 7x+y=7
slope\:7x+y=7
inverse of 2+sqrt(3+x)
inverse\:2+\sqrt{3+x}
distance (-3,-1),(7,-5)
distance\:(-3,-1),(7,-5)
3x-5=0
3x-5=0
intercepts of f(x)=x^2-8x
intercepts\:f(x)=x^{2}-8x
inverse of f(x)=(x+5)/(-x-3)
inverse\:f(x)=\frac{x+5}{-x-3}
intercepts of f(x)=x^2+2x-2
intercepts\:f(x)=x^{2}+2x-2
simplify (8.7)(2.1)
simplify\:(8.7)(2.1)
inverse of f(x)=1-sqrt(x+2)
inverse\:f(x)=1-\sqrt{x+2}
slope ofintercept (-4.2)m= 7/9
slopeintercept\:(-4.2)m=\frac{7}{9}
slope of (6.3)((-6)/5)
slope\:(6.3)(\frac{-6}{5})
extreme f(x)=(x^2)/(2x-1)
extreme\:f(x)=\frac{x^{2}}{2x-1}
asymptotes of ln(x-4)
asymptotes\:\ln(x-4)
intercepts of f(x)=(x-5)^2-9
intercepts\:f(x)=(x-5)^{2}-9
domain of f(x)=(sqrt(x-2))/(x-9)
domain\:f(x)=\frac{\sqrt{x-2}}{x-9}
domain of f(x)=sqrt(-9x+9)
domain\:f(x)=\sqrt{-9x+9}
inflection sin(pit)
inflection\:\sin(πt)
perpendicular y= 3/2 x-3
perpendicular\:y=\frac{3}{2}x-3
inverse of f(x)=(15-2x)/3
inverse\:f(x)=\frac{15-2x}{3}
slope ofintercept y+4=-4/5 (x+5)
slopeintercept\:y+4=-\frac{4}{5}(x+5)
domain of f(x)= 1/(x^2-2x-3)
domain\:f(x)=\frac{1}{x^{2}-2x-3}
inverse of f(x)=(2x-3)^2-1
inverse\:f(x)=(2x-3)^{2}-1
extreme f(x)= 7/(x^2+1)
extreme\:f(x)=\frac{7}{x^{2}+1}
domain of f(x)= 4/(x+4)
domain\:f(x)=\frac{4}{x+4}
asymptotes of f(x)=(2x-6)/(-x+4)
asymptotes\:f(x)=\frac{2x-6}{-x+4}
intercepts of f(x)=x^2+y=36
intercepts\:f(x)=x^{2}+y=36
domain of f(x)=sqrt(3-5x)
domain\:f(x)=\sqrt{3-5x}
domain of f(x)=4x-10
domain\:f(x)=4x-10
domain of f(x)=x+10
domain\:f(x)=x+10
periodicity of y=-5cos(pi/8 x)+3
periodicity\:y=-5\cos(\frac{π}{8}x)+3
asymptotes of e^{x-5}
asymptotes\:e^{x-5}
domain of f(x)=(4x)/(x^2-9)
domain\:f(x)=\frac{4x}{x^{2}-9}
range of f(x)=-1/2 x^2+9x-3
range\:f(x)=-\frac{1}{2}x^{2}+9x-3
inverse of F(x)=2+sqrt(x-7)
inverse\:F(x)=2+\sqrt{x-7}
inverse of f(x)=\sqrt[3]{x^5+9}
inverse\:f(x)=\sqrt[3]{x^{5}+9}
amplitude of cos(θ/4+pi/4)-2
amplitude\:\cos(\frac{θ}{4}+\frac{π}{4})-2
range of f(x)=x^2+2x+1
range\:f(x)=x^{2}+2x+1
range of r(x)= 1/(x-2)
range\:r(x)=\frac{1}{x-2}
inflection x^{2/3}(1-x)
inflection\:x^{\frac{2}{3}}(1-x)
amplitude of-4-2cos(5x)
amplitude\:-4-2\cos(5x)
inverse of f(x)=x^{1/3}-9
inverse\:f(x)=x^{\frac{1}{3}}-9
parity f(x)=(4x^2-5)/(2x^3+x)
parity\:f(x)=\frac{4x^{2}-5}{2x^{3}+x}
perpendicular 4x+3y=9
perpendicular\:4x+3y=9
distance (1,1),(3,4)
distance\:(1,1),(3,4)
critical f(x)=x^4-2x^2+2
critical\:f(x)=x^{4}-2x^{2}+2
domain of 5(x+4)^2+2
domain\:5(x+4)^{2}+2
amplitude of-cos(x)
amplitude\:-\cos(x)
range of f(x)=2x
range\:f(x)=2x
domain of f(x)=sqrt(x(x-2))
domain\:f(x)=\sqrt{x(x-2)}
inverse of sqrt(x+4)-3
inverse\:\sqrt{x+4}-3
inverse of f(x)=x^2-8x
inverse\:f(x)=x^{2}-8x
domain of (4x-8)/((x(x-2)))
domain\:\frac{4x-8}{(x(x-2))}
critical f(x)=e^x-x
critical\:f(x)=e^{x}-x
inverse of f(x)=-x+6
inverse\:f(x)=-x+6
symmetry y^2=x+144
symmetry\:y^{2}=x+144
critical 5cot(x)
critical\:5\cot(x)
domain of f(x)=(2x+1)/(2x-4)
domain\:f(x)=\frac{2x+1}{2x-4}
domain of f(x)=x^4+4x^2+6
domain\:f(x)=x^{4}+4x^{2}+6
inverse of f(x)=-2x^2+24x
inverse\:f(x)=-2x^{2}+24x
inverse of x^2+4x
inverse\:x^{2}+4x
intercepts of-2x+3
intercepts\:-2x+3
extreme f(x)= 1/(x-2)
extreme\:f(x)=\frac{1}{x-2}
1
..
280
281
282
283
284
..
1324