Solution
Solution
+2
Interval Notation
Decimal Notation
Solution steps
Use the following identity:
Simplify
Let:
Factor
Break the expression into groups
Definition
Factors of
Divisors (Factors)
Find the Prime factors of
is a prime number, therefore no factorization is possible
Add 1
The factors of
For every two factors such that check if
Check True
Group into
Factor out from
Apply exponent rule:
Factor out common term
Factor out common term
Identify the intervals
Find the signs of the factors of
Find the signs of
Move to the right side
Subtract from both sides
Simplify
Divide both sides by
Divide both sides by
Simplify
Move to the right side
Subtract from both sides
Simplify
Divide both sides by
Divide both sides by
Simplify
Move to the right side
Subtract from both sides
Simplify
Divide both sides by
Divide both sides by
Simplify
Find the signs of
Move to the right side
Subtract from both sides
Simplify
Move to the right side
Subtract from both sides
Simplify
Move to the right side
Subtract from both sides
Simplify
Summarize in a table:
Identify the intervals that satisfy the required condition:
Substitute back
If then
Switch sides
For , if then
Simplify
Use the following property:
Use the following trivial identity:
Simplify
Use the following property:
Use the following trivial identity:
Simplify
Apply rule
Convert element to fraction:
Since the denominators are equal, combine the fractions:
Add similar elements:
For , if then
Simplify
Use the following property:
Use the following trivial identity:
Simplify
Apply rule
Convert element to fraction:
Since the denominators are equal, combine the fractions:
Add similar elements:
Apply the fraction rule:
Simplify
Use the following property:
Use the following trivial identity:
Combine the intervals
Merge Overlapping Intervals