J1.04: Section 1 Part 3
Characteristics of exponential models
Doubling time and half-life: In an exponential model, equal steps in the input variable will always increase (or decrease) the value of the output variable by the same percentage. When the input variable is time, it is often useful to describe the process by how long it takes for the output to double (for growth) or decline to half (for decay) — these are called the “doubling time” or “half-life”. These values can be estimated from the graph of the model by taking the y value in the model that is furthest from zero, drawing a horizontal line at half that height, then noting the difference between the x values of the original point and the point where the half-height line crosses the graph of the model.Example 2: Estimate the doubling time of the model for the 1780-1870 U.S. census data.
Solution: The highest point on the graph of the model is (x=90, y=40.0), predicting a 1870 population (90 years after 1780) of 40.0 million people. Half that y value is 20.0, and we can see that the model graph crosses that value about x=65, halfway between the x=60 and x=70 data points. Subtracting 65 from 90 tells us that the y values in the model double in about 25 years. Comments on this solution: Notice that the model predicts a population of 10 million at about x=40, then 20 million at about x=65, then 40 million at about x=90 — this shows that the doubling time of 25 years is the same for different parts of the graph (this is true only for exponential models). Using the highest point graphed on the model makes it easier to estimate the coordinates (estimating the x position for y=5 would be harder, for example). For a decaying-exponential model, we still use the highest point but it is the first point on the left, so the time to the half-height point is a half-life rather than a doubling time.
Example 3: The intensity in Curies of a radioactive material that is used to make x-ray images of pipes is calibrated every 15 days, giving the dataset shown to the right. Fit an exponential model to the data to determine if this intensity exhibits exponential decay. If it does, find the decay rate of the material.
Solution process:
|
|
Licenses & Attributions
CC licensed content, Shared previously
- Mathematics for Modeling. Authored by: Mary Parker and Hunter Ellinger. License: CC BY: Attribution.