Exercise 30
Dataset K |
x |
y |
0 |
0.192 |
0.25 |
0.171 |
0.5 |
0.152 |
0.75 |
0.140 |
1 |
0.129 |
1.25 |
0.117 |
1.5 |
0.112 |
1.75 |
0.104 |
2 |
0.098 |
2.25 |
0.088 |
2.5 |
0.087 |
2.75 |
0.081 |
3 |
0.075 |
3.25 |
0.073 |
3.5 |
0.069 |
3.75 |
0.068 |
4 |
0.061 |
4.25 |
0.061 |
4.5 |
0.058 |
4.75 |
0.057 |
5 |
0.055 |
|
Exercise 31
Dataset L |
x |
y |
10 |
263 |
20 |
378 |
30 |
453 |
40 |
525 |
50 |
585 |
60 |
646 |
70 |
693 |
80 |
744 |
90 |
789 |
100 |
827 |
110 |
871 |
120 |
908 |
130 |
943 |
140 |
985 |
150 |
1013 |
160 |
1052 |
170 |
1081 |
|
Exercise 32
Dataset M |
x |
y |
0 |
8 |
2 |
193 |
4 |
364 |
6 |
529 |
8 |
657 |
10 |
722 |
12 |
725 |
14 |
678 |
16 |
531 |
18 |
426 |
20 |
235 |
22 |
61 |
24 |
-162 |
26 |
-335 |
28 |
-467 |
30 |
-637 |
32 |
-693 |
34 |
-721 |
36 |
-670 |
38 |
-570 |
40 |
-461 |
42 |
-303 |
44 |
-61 |
46 |
98 |
48 |
300 |
50 |
468 |
52 |
579 |
54 |
688 |
56 |
735 |
58 |
713 |
60 |
620 |
62 |
498 |
64 |
325 |
66 |
134 |
68 |
-57 |
70 |
-248 |
72 |
-437 |
74 |
-574 |
76 |
-683 |
78 |
-724 |
80 |
-743 |
82 |
-645 |
84 |
-513 |
86 |
-345 |
88 |
-182 |
90 |
13 |
92 |
216 |
94 |
405 |
96 |
540 |
98 |
660 |
|
Exercise 33
Dataset N |
x |
y |
-3.0 |
0 |
-2.8 |
0 |
-2.6 |
0 |
-2.4 |
1 |
-2.2 |
2 |
-2.0 |
4 |
-1.8 |
11 |
-1.6 |
17 |
-1.4 |
35 |
-1.2 |
60 |
-1.0 |
97 |
-0.8 |
94 |
-0.6 |
187 |
-0.4 |
205 |
-0.2 |
236 |
0.0 |
237 |
0.2 |
228 |
0.4 |
208 |
0.6 |
182 |
0.8 |
118 |
1.0 |
82 |
1.2 |
51 |
1.4 |
25 |
1.6 |
15 |
1.8 |
9 |
2.0 |
1 |
2.2 |
2 |
2.4 |
0 |
2.6 |
0 |
2.8 |
0 |
3.0 |
0 |
|
Exercise 34
Dataset O |
x |
y |
-7 |
0.0 |
-6 |
0.2 |
-5 |
0.9 |
-4 |
1.2 |
-3 |
3.0 |
-2 |
5.0 |
-1 |
8.1 |
0 |
12.2 |
1 |
16.6 |
2 |
19.7 |
3 |
21.6 |
4 |
23.2 |
5 |
23.8 |
6 |
24.2 |
7 |
24.3 |
|
Exercise 30-34 Instructions
The formulas supplied below (in both algebraic form and as the spreadsheet formula for C3) will fit the corresponding dataset well as soon as the best settings are found for the parameters a and b.
For each formula supplied, make a worksheet that uses it as a model. Then put the specified dataset into the worksheet and use the Solver tool to find the a and b values that fit the dataset best.
For Dataset K, use formula
[latex-display]y=\frac{1}{(a+bx)}[/latex-display]
=1/($G$3+$G$4*A3)
[Start with G3=5 & G4=1]
For Dataset L, use formula
[latex-display]y=a\cdot{{x}^{b}}[/latex-display]
=$G$3*A3^$G$4
[Start with G3=1 & G4=1]
For Dataset M, use formula
[latex-display]y=a\cdot\sin(b\cdotx)[/latex-display]
=$G$3*SIN($G$4*A3)
[Start with G3=1000 & G4=1]
For Dataset N, use formula
[latex-display]y=a\cdot{{b}^{-{{x}^{2}}}}[/latex-display]
=$G$3*($G$4^-(A3^2))
[Start with G3=100 & G4=2]
For Dataset O, use formula
[latex-display]y=\frac{a}{1+{{b}^{x}}}[/latex-display]
=$G$3/(1+$G$4^A3)
[Start with G3=10 & G4=1]
[Optional: for each model, choose names for the a and b parameters that are suggestive of the effect that parameter has on the model.] |