Assessment Module 5: Modular Arithmetic
Modular Arithmetic
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Determine if the statement is true or false.
Find the sum.
Find the sum or product using the requested clock system.
Decide whether the congruence statement is true or false.
1) | 1351 0 (mod 7) | 1) | |
A) False | B) True | ||
2) | 11 | 4 (mod 7) | 2) |
A) False | B) True | ||
3) | 66 | 7 (mod 12) | 3) |
A) False | B) True |
4) | (6 + 5) (mod 6) | 4) | ||
A) 5 | B) 6 | C) 11 | D) 4 | |
5) | (48 + 48) (mod 50) | 5) | ||
A) 4 | B) 46 | C) 50 | D) 96 |
6) | 8 | + 10 in 12-hour clock arithmetic | 6) | ||
A) 2 | B) 8 | C) 6 | D) 0 | ||
7) | 7 | · 16 in 12-hour clock arithmetic | 7) | ||
A) 4 | B) 5 | C) 16 | D) 11 | ||
8) | 3 | + 221 in 7-day clock arithmetic | 8) | ||
A) 3 | B) 5 | C) 0 | D) 8 | ||
9) | 1400 + 1900 in the military 24-hour clock system | 9) | |||
A) 0930 | B) 12100 | C) 1900 | D) 0900 | ||
10) | 0930 + 1640 in the military 24-hour clock system | 10) | |||
A) 0310 | B) 2610 | C) 0210 | D) 2570 |
11) | 6 13 (mod 2) | 11) |
A) True | B) False | |
12) | 0 26 (mod 7) | 12) |
A) True | B) False | |
13) | 19 77 (mod 5) | 13) |
A) True | B) False | |
14) | 5 21 (mod 5) | 14) |
A) True | B) False |
1
15) 3 13 (mod 11) 15)
A) True B) False
Perform the modular arithmetic operation.
Find all positive solutions for the equation.
16) | (46 + 37)(mod 7) | 16) | ||
A) 6 | B) 7 | C) 11 | D) 5 | |
17) | (130 + 106)(mod 9) | 17) | ||
A) 10 | B) 26 | C) 2 | D) 1 | |
18) | (10 · 7)(mod 6) | 18) | ||
A) 3 | B) 6 | C) 11 | D) 4 | |
19) | [(11 + 7) · (7 + 3)](mod 7) | 19) | ||
A) 4 | B) 7 | C) 25 | D) 5 | |
20) | (49 - 25)(mod 5) | 20) | ||
A) 3 | B) 0 | C) 120 | D) 4 | |
21) | (15 - 53)(mod 4) | 21) | ||
A) 3 | B) 2 | C) 1 | D) 152 | |
22) | [(3 · 7) - 5](mod 4) | 22) | ||
A) 1 | B) 3 | C) 2 | D) 0 | |
23) | [(13 · 3) + 9](mod 8) | 23) | ||
A) 3 | B) 7 | C) 0 | D) 1 | |
24) | [(4 - 9) · 7](mod 5) | 24) | ||
A) 2 | B) 0 | C) 4 | D) 3 | |
25) | [(-5) · 6](mod 7) | 25) | ||
A) -5 | B) 5 | C) -2 | D) 1 |
26) x 4 (mod 7) | 26) | |||
A) {1, 18, 25, ...} | B) {4, 11, 18, ...} | C) {4, 8, 12, ...} | D) {11, 18, 91, ...} | |
27) | 2x 1 (mod 3) | 27) | ||
A) {2, 6, 10, 14, ...} | B) {1, 4, 7, 10, ...} | |||
C) {2, 5, 8, 11, ...} | D) None | |||
28) | 2x 8 (mod 10) | 28) | ||
A) Identity | B) {4, 9, 14, 19, 24, 29, ...} | |||
C) {4, 14, 24, ...} | D) {9, 19, 29, ...} | |||
29) | 8x 4 (mod 4) | 29) | ||
A) {4, 8, 12, ...} | B) {1, 5, 9, ...} | C) Identity | D) {2, 6, 5, ...} |
2
30) | 10x 1 (mod 10) | 30) | ||
A) {1, 10, 15, ...} | B) None | C) Identity | D) {2, 7, 12, ...} | |
31) | (2 + x) 5 (mod 4) | 31) | ||
A) {4, 6, 8, 10, 12, 14, ...} | B) {0, 2, 4, 6, 8, 10, ...} | |||
C) {3, 7, 11, 15, 19, 23, ...} | D) None |