Real Numbers
2.1 Learning Objectives
- Classify a real number as a natural, whole, integer, rational, or irrational number.
- Define and use the commutative property of addition and multiplication
- Define and use the associative property of addition and multiplication
- Define and use the distributive property
- Define and use the identity property of addition and multiplication
- Define and use the inverse property of addition and multiplication
- Define and identify constants in an algebraic expression
- Evaluate algebraic expressions for different values
Natural numbers
The most familiar numbers are the natural numbers (sometimes called whole numbers or counting numbers): 1, 2, 3, and so on. The mathematical symbol for the set of all natural numbers is written as [latex]\mathbb{N}[/latex], and sometimes [latex]\mathbb{N_0}[/latex] or [latex]\mathbb{N_1}[/latex] when it is necessary to indicate whether the set should start with 0 or 1, respectively.Integers
When the set of negative numbers is combined with the set of natural numbers (including 0), the result is defined as the set of integers, [latex]\mathbb{Z}[/latex]Rational numbers
Real numbers
- a terminating decimal: [latex]\frac{15}{8}=1.875[/latex], or
- a repeating decimal: [latex]\frac{4}{11}=0.36363636\dots =0.\overline{36}[/latex]
Example 2.1.A
Write each of the following as a rational number.- 7
- 0
- [latex]–8[/latex]
Answer: Write a fraction with the integer in the numerator and 1 in the denominator.
- [latex]7=\frac{7}{1}[/latex]
- [latex]0=\frac{0}{1}[/latex]
- [latex]-8=-\frac{8}{1}[/latex]
Example 2.1.B
Write each of the following rational numbers as either a terminating or repeating decimal.- [latex]-\frac{5}{7}[/latex]
- [latex]\frac{15}{5}[/latex]
- [latex]\frac{13}{25}[/latex]
Answer: Write each fraction as a decimal by dividing the numerator by the denominator.
- [latex]-\frac{5}{7}=-0.\overline{714285}[/latex], a repeating decimal
- [latex]\frac{15}{5}=3[/latex] (or 3.0), a terminating decimal
- [latex]\frac{13}{25}=0.52[/latex], a terminating decimal
2.1.1 Irrational Numbers
At some point in the ancient past, someone discovered that not all numbers are rational numbers. A builder, for instance, may have found that the diagonal of a square with unit sides was not 2 or even [latex]\frac{3}{2}[/latex], but was something else. Or a garment maker might have observed that the ratio of the circumference to the diameter of a roll of cloth was a little bit more than 3, but still not a rational number. Such numbers are said to be irrational because they cannot be written as fractions. These numbers make up the set of irrational numbers. Irrational numbers cannot be expressed as a fraction of two integers. It is impossible to describe this set of numbers by a single rule except to say that a number is irrational if it is not rational. So we write this as shown.Example 2.1.C
Determine whether each of the following numbers is rational or irrational. If it is rational, determine whether it is a terminating or repeating decimal.- [latex]\sqrt{25}[/latex]
- [latex]\frac{33}{9}[/latex]
- [latex]\sqrt{11}[/latex]
- [latex]\frac{17}{34}[/latex]
- [latex]0.3033033303333\dots[/latex]
Answer:
- [latex]\sqrt{25}:[/latex] This can be simplified as [latex]\sqrt{25}=5[/latex]. Therefore, [latex]\sqrt{25}[/latex] is rational.
- [latex]\frac{33}{9}:[/latex] Because it is a fraction, [latex]\frac{33}{9}[/latex] is a rational number. Next, simplify and divide.
[latex]\frac{33}{9}=\frac{{{11}\cdot{3}}}{{{3}\cot{3}}}=\frac{11}{3}=3.\overline{6}[/latex]So, [latex]\frac{33}{9}[/latex] is rational and a repeating decimal.
- [latex]\sqrt{11}:[/latex] This cannot be simplified any further. Therefore, [latex]\sqrt{11}[/latex] is an irrational number.
- [latex]\frac{17}{34}:[/latex] Because it is a fraction, [latex]\frac{17}{34}[/latex] is a rational number. Simplify and divide.
[latex]\frac{17}{34}=\frac{{1}{\overline{)17}}}{\underset{2}{\overline{)34}}}=\frac{1}{2}=0.5[/latex]So, [latex]\frac{17}{34}[/latex] is rational and a terminating decimal.
- 0.3033033303333... is not a terminating decimal. Also note that there is no repeating pattern because the group of 3s increases each time. Therefore it is neither a terminating nor a repeating decimal and, hence, not a rational number. It is an irrational number.
2.1.2 Real Numbers
Given any number n, we know that n is either rational or irrational. It cannot be both. The sets of rational and irrational numbers together make up the set of real numbers. As we saw with integers, the real numbers can be divided into three subsets: negative real numbers, zero, and positive real numbers. Each subset includes fractions, decimals, and irrational numbers according to their algebraic sign (+ or –). Zero is considered neither positive nor negative. The real numbers can be visualized on a horizontal number line with an arbitrary point chosen as 0, with negative numbers to the left of 0 and positive numbers to the right of 0. A fixed unit distance is then used to mark off each integer (or other basic value) on either side of 0. Any real number corresponds to a unique position on the number line.The converse is also true: Each location on the number line corresponds to exactly one real number. This is known as a one-to-one correspondence. We refer to this as the real number line as shown in Figure 1.Example 2.1.D
Classify each number as either positive or negative and as either rational or irrational. Does the number lie to the left or the right of 0 on the number line?- [latex]-\frac{10}{3}[/latex]
- [latex]\sqrt{5}[/latex]
- [latex]-\sqrt{289}[/latex]
- [latex]-6\pi[/latex]
- [latex]0.615384615384\dots[/latex]
Answer:
- [latex]-\frac{10}{3}[/latex] is negative and rational. It lies to the left of 0 on the number line.
- [latex]\sqrt{5}[/latex] is positive and irrational. It lies to the right of 0.
- [latex]-\sqrt{289}=-\sqrt{{17}^{2}}=-17[/latex] is negative and rational. It lies to the left of 0.
- [latex]-6\pi [/latex] is negative and irrational. It lies to the left of 0.
- [latex]0.615384615384\dots [/latex] is a repeating decimal so it is rational and positive. It lies to the right of 0.
2.1.3 Sets of Numbers as Subsets
Beginning with the natural numbers, we have expanded each set to form a larger set, meaning that there is a subset relationship between the sets of numbers we have encountered so far. These relationships become more obvious when seen as a diagram.A General Note: Sets of Numbers
The set of natural numbers includes the numbers used for counting: [latex]\{1,2,3,\dots\}[/latex]. The set of whole numbers is the set of natural numbers plus zero: [latex]\{0,1,2,3,\dots\}[/latex]. The set of integers adds the negative natural numbers to the set of whole numbers: [latex]\{\dots,-3,-2,-1,0,1,2,3,\dots\}[/latex]. The set of rational numbers includes fractions written as [latex]\{\frac{m}{n}|m\text{ and }n\text{ are integers and }n\ne 0\}[/latex]. The set of irrational numbers is the set of numbers that are not rational, are nonrepeating, and are nonterminating: [latex]\{h|h\text{ is not a rational number}\}[/latex].Example 2.1.E
Classify each number as being a natural number (N), whole number (W), integer (I), rational number (Q), and/or irrational number (Q').- [latex]\sqrt{36}[/latex]
- [latex]\frac{8}{3}[/latex]
- [latex]\sqrt{73}[/latex]
- [latex]-6[/latex]
- [latex]3.2121121112\dots [/latex]
Answer:
N | W | I | Q | Q' | |
---|---|---|---|---|---|
1. [latex]\sqrt{36}=6[/latex] | X | X | X | X | |
2. [latex]\frac{8}{3}=2.\overline{6}[/latex] | X | ||||
3. [latex]\sqrt{73}[/latex] | X | ||||
4. [latex]–6[/latex] | X | X | |||
5. [latex]3.2121121112\dots[/latex] | X |
2.1.4 Use Properties of Real Numbers
For some activities we perform, the order of certain processes does not matter, but the order of others do. For example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does matter whether we put on shoes or socks first. The same thing is true for addition and multiplication.Commutative Properties
The commutative property of addition states that numbers may be added in any order without affecting the sum.Example 2.1.F
Show that numbers may be added in any order without affecting the sum. [latex]\left(-2\right)+7=5[/latex]Answer: [latex-display]7+\left(-2\right)=5[/latex-display]
Example 2.1.G
Show that numbers may be multiplied in any order without affecting the product.[latex]\left(-11\right)\cdot\left(-4\right)=44[/latex]Answer: [latex]\left(-4\right)\cdot\left(-11\right)=44[/latex]
Associative Properties - Grouping
The associative property of multiplication tells us that it does not matter how we group numbers when multiplying. We can move the grouping symbols to make the calculation easier, and the product remains the same.Example 2.1.H
Show that you can regroup numbers that are multiplied together and not affect the product.[latex]\left(3\cdot4\right)\cdot5=60[/latex]Answer: [latex]3\cdot\left(4\cdot5\right)=60[/latex]
Example 2.1.I
Show that regrouping addition does not affect the sum. [latex][15+\left(-9\right)]+23=29[/latex]Answer: [latex]15+[\left(-9\right)+23]=29[/latex]
Example 2.1.J
Use the associative property to explore whether subtraction and division are associative. 1)[latex]8-\left(3-15\right)\stackrel{?}{=}\left(8-3\right)-15[/latex] 2)[latex]64\div\left(8\div4\right)\stackrel{?}{=}\left(64\div8\right)\div4[/latex]Answer: 1)[latex]\begin{array}{r}8-\left(3-15\right)\stackrel{?}{=}\left(8-3\right)-15\\ 8-\left(-12\right)=5-15\,\,\,\,\,\,\,\,\,\,\,\,\, \\ 20\neq-10\,\,\,\,\,\,\,\,\,\,\end{array}[/latex] 2)[latex]\begin{array}{r}64\div\left(8\div4\right)\stackrel{?}{=}\left(64\div8\right)\div4\\64\div2\stackrel{?}{=}8\div4 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ 32\neq 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\end{array}[/latex] As we can see, neither subtraction nor division is associative.
Distributive Property
The distributive property states that the product of a factor times a sum is the sum of the factor times each term in the sum.Example 2.1.K
Use the distributive property to show that [latex]4\cdot[12+(-7)]=20[/latex]Answer: Note that 4 is outside the grouping symbols, so we distribute the 4 by multiplying it by 12, multiplying it by [latex]–7[/latex], and adding the products.
[latex]\begin{array}{ccc}\hfill 6+\left(3\cdot 5\right)& \stackrel{?}{=}& \left(6+3\right)\cdot \left(6+5\right) \\ \hfill 6+\left(15\right)& \stackrel{?}{=}& \left(9\right)\cdot \left(11\right)\hfill \\ \hfill 21& \ne & \text{ }99\hfill \end{array}[/latex]
A special case of the distributive property occurs when a sum of terms is subtracted.Example 2.1.L
Rewrite the last example by changing the sign of each term and adding the results.Answer: [latex]\begin{array}{l}12-\left(5+3\right)=12+\left(-5-3\right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=12+\left(-8\right) \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\end{array}[/latex]
Identity Properties
The identity property of addition states that there is a unique number, called the additive identity (0) that, when added to a number, results in the original number.Example 2.1.M
Show that the identity property of addition and multiplication are true for [latex]-6, 23[/latex]
Answer:
[latex]\left(-6\right)+0=-6[/latex]
[latex]23+0=23[/latex]
[latex]-6\cdot1=-6[/latex]
[latex]23\cdot 1=23[/latex]
There are no exceptions for these properties; they work for every real number, including 0 and 1.
Inverse Properties
The inverse property of addition states that, for every real number a, there is a unique number, called the additive inverse (or opposite), denoted−a, that, when added to the original number, results in the additive identity, 0.Example 2.1.N
1) Define the additive inverse of [latex]a=-8[/latex], and use it to illustrate the inverse property of addition.
2) Write the reciprocal of [latex]a=-\frac{2}{3}[/latex], and use it to illustrate the inverse property of multiplication.
Answer:
1) The additive inverse is 8, and [latex]\left(-8\right)+8=0[/latex]
2) The reciprocal is [latex]-\frac{3}{2}[/latex] and [latex]\left(-\frac{2}{3}\right)\cdot \left(-\frac{3}{2}\right)=1[/latex]
A General Note: Properties of Real Numbers
The following properties hold for real numbers a, b, and c.Addition | Multiplication | |
---|---|---|
Commutative Property | [latex]a+b=b+a[/latex] | [latex]a\cdot b=b\cdot a[/latex] |
Associative Property | [latex]a+\left(b+c\right)=\left(a+b\right)+c[/latex] | [latex]a\left(bc\right)=\left(ab\right)c[/latex] |
Distributive Property | [latex]a\cdot \left(b+c\right)=a\cdot b+a\cdot c[/latex] | |
Identity Property | There exists a unique real number called the additive identity, 0, such that, for any real number a
[latex]a+0=a[/latex] |
There exists a unique real number called the multiplicative identity, 1, such that, for any real number a
[latex]a\cdot 1=a[/latex] |
Inverse Property | Every real number a has an additive inverse, or opposite, denoted [latex]–a[/latex], such that
[latex]a+\left(-a\right)=0[/latex] |
Every nonzero real number a has a multiplicative inverse, or reciprocal, denoted [latex]\frac{1}{a}[/latex], such that
[latex]a\cdot \left(\frac{1}{a}\right)=1[/latex] |
Example 2.1.O
Use the properties of real numbers to rewrite and simplify each expression. State which properties apply.- [latex]3\left(6+4\right)[/latex]
- [latex]\left(5+8\right)+\left(-8\right)[/latex]
- [latex]6-\left(15+9\right)[/latex]
- [latex]\frac{4}{7}\cdot \left(\frac{2}{3}\cdot \frac{7}{4}\right)[/latex]
- [latex]100\cdot \left[0.75+\left(-2.38\right)\right][/latex]
Answer:
- [latex]\begin{array}{l}\\\\3\cdot\left(6+4\right)=3\cdot6+3\cdot4\,\,\,\,\,\,\,\,\,\,\,\text{Distributive property} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=18+12\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Simplify} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=30\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Simplify}\end{array}[/latex]
- [latex]\begin{array}{l}\\\\\left(5+8\right)+\left(-8\right)=5+\left[8+\left(-8\right)\right]\,\,\,\,\,\,\,\,\,\,\,\text{Associative property of addition} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=5+0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Inverse property of addition} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Identity property of addition}\end{array}[/latex]
- [latex]\begin{array}{l}\\\\6-\left(15+9\right) \hfill& =6+[\left(-15\right)+\left(-9\right)] \hfill& \text{Distributive property} \\ \hfill& =6+\left(-24\right) \hfill& \text{Simplify} \\ \hfill& =-18 \hfill& \text{Simplify}\end{array}[/latex]
- [latex]\begin{array}{l}\\\\\\\\\frac{4}{7}\cdot\left(\frac{2}{3}\cdot\frac{7}{4}\right) \hfill& =\frac{4}{7} \cdot\left(\frac{7}{4}\cdot\frac{2}{3}\right) \hfill& \text{Commutative property of multiplication} \\ \hfill& =\left(\frac{4}{7}\cdot\frac{7}{4}\right)\cdot\frac{2}{3}\hfill& \text{Associative property of multiplication} \\ \hfill& =1\cdot\frac{2}{3} \hfill& \text{Inverse property of multiplication} \\ \hfill& =\frac{2}{3} \hfill& \text{Identity property of multiplication}\end{array}[/latex]
- [latex]\begin{array}{l}\\\\100\cdot[0.75+\left(-2.38\right)] \hfill& =100\cdot0.75+100\cdot\left(-2.38\right)\hfill& \text{Distributive property} \\ \hfill& =75+\left(-238\right) \hfill& \text{Simplify} \\ \hfill& =-163 \hfill& \text{Simplify}\end{array}[/latex]
2.1.5 Evaluate Algebraic Expressions
In mathematics, we may see expressions such as [latex]x+5,\frac{4}{3}\pi {r}^{3}[/latex], or [latex]\sqrt{2{m}^{3}{n}^{2}}[/latex]. In the expression [latex]x+5[/latex], 5 is called a constant because it does not vary and x is called a variable because it does. (In naming the variable, ignore any exponents or radicals containing the variable.) An algebraic expression is a collection of constants and variables joined together by the algebraic operations of addition, subtraction, multiplication, and division. We have already seen some real number examples of exponential notation, a shorthand method of writing products of the same factor. When variables are used, the constants and variables are treated the same way.Example 2.1.P
List the constants and variables for each algebraic expression.- [latex]x+5[/latex]
- [latex]\frac{4}{3}\pi {r}^{3}[/latex]
- [latex]\sqrt{2{m}^{3}{n}^{2}}[/latex]
Answer:
Expression | Constants | Variables |
---|---|---|
1. x + 5 | 5 | x |
2. [latex]\frac{4}{3}\pi {r}^{3}[/latex] | [latex]\frac{4}{3},\pi [/latex] | [latex]r[/latex] |
3. [latex]\sqrt{2{m}^{3}{n}^{2}}[/latex] | 2 | [latex]m,n[/latex] |
Example 2.1.Q
Evaluate the expression [latex]2x - 7[/latex] for each value for x.- [latex]x=0[/latex]
- [latex]x=1[/latex]
- [latex]x=\frac{1}{2}[/latex]
- [latex]x=-4[/latex]
Answer:
- Substitute 0 for [latex]x[/latex].
[latex]\begin{array}\text{ }2x-7 \hfill& = 2\left(0\right)-7 \\ \hfill& =0-7 \\ \hfill& =-7\end{array}[/latex]
- Substitute 1 for [latex]x[/latex].
[latex]\begin{array}\text{ }2x-7 \hfill& = 2\left(1\right)-7 \\ \hfill& =2-7 \\ \hfill& =-5\end{array}[/latex]
- Substitute [latex]\frac{1}{2}[/latex] for [latex]x[/latex].
[latex]\begin{array}\text{ }2x-7 \hfill& = 2\left(\frac{1}{2}\right)-7 \\ \hfill& =1-7 \\ \hfill& =-6\end{array}[/latex]
- Substitute [latex]-4[/latex] for [latex]x[/latex].
[latex]\begin{array}\text{ }2x-7 \hfill& = 2\left(-4\right)-7 \\ \hfill& =-8-7 \\ \hfill& =-15\end{array}[/latex]
Example 2.1.R
Evaluate each expression for the given values.- [latex]x+5[/latex] for [latex]x=-5[/latex]
- [latex]\frac{t}{2t - 1}[/latex] for [latex]t=10[/latex]
- [latex]\frac{4}{3}\pi {r}^{3}[/latex] for [latex]r=5[/latex]
- [latex]a+ab+b[/latex] for [latex]a=11,b=-8[/latex]
- [latex]\sqrt{2{m}^{3}{n}^{2}}[/latex] for [latex]m=2,n=3[/latex]
Answer:
- Substitute [latex]-5[/latex] for [latex]x[/latex].
[latex]\begin{array}\text{ }x+5\hfill&=\left(-5\right)+5 \\ \hfill&=0\end{array}[/latex]
- Substitute 10 for [latex]t[/latex].
[latex]\begin{array}\text{ }\frac{t}{2t-1}\hfill& =\frac{\left(10\right)}{2\left(10\right)-1} \\ \hfill& =\frac{10}{20-1} \\ \hfill& =\frac{10}{19}\end{array}[/latex]
- Substitute 5 for [latex]r[/latex].
[latex]\begin{array}\text{ }\frac{4}{3}\pi r^{3} \hfill& =\frac{4}{3}\pi\left(5\right)^{3} \\ \hfill& =\frac{4}{3}\pi\left(125\right) \\ \hfill& =\frac{500}{3}\pi\end{array}[/latex]
- Substitute 11 for [latex]a[/latex] and –8 for [latex]b[/latex].
[latex]\begin{array}\text{ }a+ab+b \hfill& =\left(11\right)+\left(11\right)\left(-8\right)+\left(-8\right) \\ \hfill& =11-88-8 \\ \hfill& =-85\end{array}[/latex]
- Substitute 2 for [latex]m[/latex] and 3 for [latex]n[/latex].
[latex]\begin{array}\text{ }\sqrt{2m^{3}n^{2}} \hfill& =\sqrt{2\left(2\right)^{3}\left(3\right)^{2}} \\ \hfill& =\sqrt{2\left(8\right)\left(9\right)} \\ \hfill& =\sqrt{144} \\ \hfill& =12\end{array}[/latex]
Licenses & Attributions
CC licensed content, Original
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
- Properties of Real Numbers. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Evaluate Various Algebraic Expressions. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
CC licensed content, Shared previously
- Unit 10: Solving Equations and Inequalities, from Developmental Math: An Open Program. Provided by: Monterey Institute of Technology and Education Located at: https://www.nroc.org/. License: CC BY: Attribution.
- College Algebra: Using Properties of Real Numbers. License: CC BY: Attribution.
- Identifying Sets of Real Numbers. Authored by: James Sousa (Mathispower4u.com) . License: CC BY: Attribution.
- College Algebra: Evaluating Algebraic Expressions. Provided by: OpenStax License: CC BY: Attribution.