Adding and Subtracting Square Roots
We can add or subtract radical expressions only when they have the same radicand and when they have the same radical type such as square roots. For example, the sum of [latex]\sqrt{2}[/latex] and [latex]3\sqrt{2}[/latex] is [latex]4\sqrt{2}[/latex]. However, it is often possible to simplify radical expressions, and that may change the radicand. The radical expression [latex]\sqrt{18}[/latex] can be written with a [latex]2[/latex] in the radicand, as [latex]3\sqrt{2}[/latex], so [latex]\sqrt{2}+\sqrt{18}=\sqrt{2}+3\sqrt{2}=4\sqrt{2}[/latex].How To: Given a radical expression requiring addition or subtraction of square roots, solve.
- Simplify each radical expression.
- Add or subtract expressions with equal radicands.
Example 6: Adding Square Roots
Add [latex]5\sqrt{12}+2\sqrt{3}\\[/latex].Solution
We can rewrite [latex]5\sqrt{12}[/latex] as [latex]5\sqrt{4\cdot 3}[/latex]. According the product rule, this becomes [latex]5\sqrt{4}\sqrt{3}[/latex]. The square root of [latex]\sqrt{4}[/latex] is 2, so the expression becomes [latex]5\left(2\right)\sqrt{3}[/latex], which is [latex]10\sqrt{3}[/latex]. Now we can the terms have the same radicand so we can add.[latex]10\sqrt{3}+2\sqrt{3}=12\sqrt{3}[/latex]
Try It 6
Add [latex]\sqrt{5}+6\sqrt{20}[/latex]. SolutionExample 7: Subtracting Square Roots
Subtract [latex]20\sqrt{72{a}^{3}{b}^{4}c}-14\sqrt{8{a}^{3}{b}^{4}c}[/latex].Solution
Rewrite each term so they have equal radicands.[latex]\begin{array}{ccc}\hfill 20\sqrt{72{a}^{3}{b}^{4}c}& =& 20\sqrt{9}\sqrt{4}\sqrt{2}\sqrt{a}\sqrt{{a}^{2}}\sqrt{{\left({b}^{2}\right)}^{2}}\sqrt{c}\hfill \\ & =& 20\left(3\right)\left(2\right)|a|{b}^{2}\sqrt{2ac}\hfill \\ & =& 120|a|{b}^{2}\sqrt{2ac}\hfill \end{array}[/latex]
[latex]\begin{array}{ccc}\hfill 14\sqrt{8{a}^{3}{b}^{4}c}& =& 14\sqrt{2}\sqrt{4}\sqrt{a}\sqrt{{a}^{2}}\sqrt{{\left({b}^{2}\right)}^{2}}\sqrt{c}\hfill \\ & =& 14\left(2\right)|a|{b}^{2}\sqrt{2ac}\hfill \\ & =& 28|a|{b}^{2}\sqrt{2ac}\hfill \end{array}[/latex]
Now the terms have the same radicand so we can subtract.
[latex]120|a|{b}^{2}\sqrt{2ac}-28|a|{b}^{2}\sqrt{2ac}\text{= }92|a|{b}^{2}\sqrt{2ac}\text{ }[/latex]
Try It 7
Subtract [latex]3\sqrt{80x}-4\sqrt{45x}[/latex]. SolutionLicenses & Attributions
CC licensed content, Specific attribution
- College Algebra. Provided by: OpenStax Authored by: OpenStax College Algebra. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution.