We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Guias de estudo > College Algebra

Key Concepts & Glossary

Key Equations

Division Algorithm [latex]f\left(x\right)=d\left(x\right)q\left(x\right)+r\left(x\right)[/latex] where [latex]q\left(x\right)\ne 0[/latex]

Key Concepts

  • Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree.
  • The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the quotient added to the remainder.
  • Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form x – k.
  • Polynomial division can be used to solve application problems, including area and volume.

Glossary

Division Algorithm
given a polynomial dividend [latex]f\left(x\right)[/latex] and a non-zero polynomial divisor [latex]d\left(x\right)[/latex] where the degree of [latex]d\left(x\right)[/latex] is less than or equal to the degree of [latex]f\left(x\right),[/latex] there exist unique polynomials [latex]q\left(x\right)[/latex] and [latex]r\left(x\right)[/latex] such that [latex]f\left(x\right)=d\left(x\right)q\left(x\right)+r\left(x\right)[/latex] where [latex]q\left(x\right)[/latex] is the quotient and [latex]r\left(x\right)[/latex] is the remainder. The remainder is either equal to zero or has degree strictly less than [latex]d\left(x\right).[/latex]
synthetic division
a shortcut method that can be used to divide a polynomial by a binomial of the form x k

Licenses & Attributions

CC licensed content, Shared previously

  • Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..