We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > College Algebra

Solutions

Solutions to Try Its

1.
Outcome Probability
Heads (H) [latex]\frac{1}{2}[/latex]
Tails (T) [latex]\frac{1}{2}[/latex]
2. [latex]\frac{2}{3}[/latex] 3. [latex]\frac{7}{13}[/latex] 4. [latex]\frac{2}{13}[/latex] 5. [latex]\frac{5}{6}[/latex] 6. [latex]\begin{array}{lll}\text{a}\text{. }\frac{1}{91};\hfill & \text{b}\text{. }\frac{\text{5}}{\text{91}};\hfill & \text{c}\text{. }\frac{86}{91}\hfill \end{array}[/latex]

Solutions to Odd-Numbered Exercises

1. probability; The probability of an event is restricted to values between [latex]0[/latex] and [latex]1[/latex], inclusive of [latex]0[/latex] and [latex]1[/latex]. 3. An experiment is an activity with an observable result. 5. The probability of the union of two events occurring is a number that describes the likelihood that at least one of the events from a probability model occurs. In both a union of sets [latex]A\text{ } \text{and }B[/latex] and a union of events [latex]A \text{and} B[/latex], the union includes either [latex]A \text{or} B[/latex] or both. The difference is that a union of sets results in another set, while the union of events is a probability, so it is always a numerical value between [latex]0[/latex] and [latex]1[/latex]. 7. [latex]\frac{1}{2}[/latex] 9. [latex]\frac{5}{8}[/latex] 11. [latex]\frac{1}{2}[/latex] 13. [latex]\frac{3}{8}[/latex] 15. [latex]\frac{1}{4}[/latex] 17. [latex]\frac{3}{4}[/latex] 19. [latex]\frac{3}{8}[/latex] 21. [latex]\frac{1}{8}[/latex] 23. [latex]\frac{15}{16}[/latex] 25. [latex]\frac{5}{8}[/latex] 27. [latex]\frac{1}{13}[/latex] 29. [latex]\frac{1}{26}[/latex] 31. [latex]\frac{12}{13}[/latex] 33.  
1 2 3 4 5 6
1 (1, 1) 2 (1, 2) 3 (1, 3) 4 (1, 4) 5 (1, 5) 6 (1, 6) 7
2 (2, 1) 3 (2, 2) 4 (2, 3) 5 (2, 4) 6 (2, 5) 7 (2, 6) 8
3 (3, 1) 4 (3, 2) 5 (3, 3) 6 (3, 4) 7 (3, 5) 8 (3, 6) 9
4 (4, 1) 5 (4, 2) 6 (4, 3) 7 (4, 4) 8 (4, 5) 9 (4, 6) 10
5 (5, 1) 6 (5, 2) 7 (5, 3) 8 (5, 4) 9 (5, 5) 10 (5, 6) 11
6 (6, 1) 7 (6, 2) 8 (6, 3) 9 (6, 4) 10 (6, 5) 11 (6, 6) 12
35. [latex]\frac{5}{12}[/latex] 37. [latex]0[/latex] 39. [latex]\frac{4}{9}[/latex] 41. [latex]\frac{1}{4}[/latex] 43. [latex]\frac{3}{4}[/latex] 45. [latex]\frac{21}{26}[/latex] 47. [latex]\frac{C\left(12,5\right)}{C\left(48,5\right)}=\frac{1}{2162}[/latex] 49. [latex]\frac{C\left(12,3\right)C\left(36,2\right)}{C\left(48,5\right)}=\frac{175}{2162}[/latex] 51. [latex]\frac{C\left(20,3\right)C\left(60,17\right)}{C\left(80,20\right)}\approx 12.49%[/latex] 53. [latex]\frac{C\left(20,5\right)C\left(60,15\right)}{C\left(80,20\right)}\approx 23.33%[/latex] 55. [latex]20.50+23.33 - 12.49=31.34%[/latex] 57. [latex]\frac{C\left(40000000,1\right)C\left(277000000,4\right)}{C\left(317000000,5\right)}=36.78%[/latex] 59. [latex]\frac{C\left(40000000,4\right)C\left(277000000,1\right)}{C\left(317000000,5\right)}=0.11%[/latex]

Licenses & Attributions

CC licensed content, Specific attribution