Solutions
Solutions to Try Its
1. a. [latex]\frac{11}{1}[/latex] b. [latex]\frac{3}{1}[/latex] c. [latex]-\frac{4}{1}[/latex] 2. a. 4 (or 4.0), terminating b. [latex]0.\overline{615384}[/latex], repeating c. –0.85, terminating 3. a. rational and repeating b. rational and terminating c. irrational d. rational and repeating e. irrational 4. a. positive, irrational; right b. negative, rational; left c. positive, rational; right d. negative, irrational; left e. positive, rational; right 5.N | W | I | Q | Q' | |
---|---|---|---|---|---|
a. [latex]-\frac{35}{7}[/latex] | X | X | |||
b. 0 | X | X | X | ||
c. [latex]\sqrt{169}[/latex] | X | X | X | X | |
d. [latex]\sqrt{24}[/latex] | X | ||||
e. [latex]4.763763763\dots[/latex] | X |
Constants | Variables | |
---|---|---|
a. [latex]2\pi r\left(r+h\right)[/latex] | [latex]2,\pi [/latex] | [latex]r,h[/latex] |
b. 2(L + W) | 2 | L, W |
c. [latex]4{y}^{3}+y[/latex] | 4 | [latex]y[/latex] |
Solutions to Odd-Numbered Exercises
1. irrational number. The square root of two does not terminate, and it does not repeat a pattern. It cannot be written as a quotient of two integers, so it is irrational. 3. The Associative Properties state that the sum or product of multiple numbers can be grouped differently without affecting the result. This is because the same operation is performed (either addition or subtraction), so the terms can be re-ordered. 5. [latex]-6[/latex] 7. [latex]-2[/latex] 9. [latex]-9[/latex] 11. 9 13. 4 15. 4 17. 0 19. 9 21. 25 23. [latex]-6[/latex] 25. 17 27. 4 29. [latex]-4[/latex] 31. [latex]-6[/latex] 33. [latex]\pm 1[/latex] 35. 2 37. 2 39. [latex]-14y - 11[/latex] 41. [latex]-4b+1[/latex] 43. [latex]43z - 3[/latex] 45. [latex]9y+45[/latex] 47. [latex]-6b+6[/latex] 49. [latex]\frac{16x}{3}\\[/latex] 51. [latex]9x[/latex] 53. [latex]\frac{1}{2}\left(40 - 10\right)+5[/latex] 55. irrational number 57. [latex]g+400 - 2\left(600\right)=1200[/latex] 59. inverse property of addition 61. 68.4 63. true 65. irrational 67. rationalLicenses & Attributions
CC licensed content, Specific attribution
- College Algebra. Provided by: OpenStax Authored by: OpenStax College Algebra. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution.