Adding and Subtracting Rational Expressions
Learning Outcomes
- Find the least common denominator of two rational expressions.
- Add and subtract rational expressions.
- Simplify complex rational expressions.
how did we know what number to use for the denominator?
In the example above, we rewrote the fractions as equivalent fractions with a common denominator of 120. Recall that we use the least common multiple of the original denominators. To find the LCM of 24 and 40, rewrite 24 and 40 as products of primes, then select the largest set of each prime appearing. [latex-display]24 = 2^3\cdot3[/latex-display] [latex-display]40=2^3\cdot5[/latex-display] We choose [latex]2^3\cdot3\cdot5=120[/latex] as the LCM, since that's the largest number of factors of 2, 3, and 5 we see. The LCM is 120. We multiply each numerator with just enough of the LCM to make each denominator 120 to get the equivalent fractions. When referring to fractions, we call the LCM the least common denominator, or the LCD.How To: Given two rational expressions, add or subtract them
- Factor the numerator and denominator.
- Find the LCD of the expressions.
- Multiply the expressions by a form of 1 that changes the denominators to the LCD.
- Add or subtract the numerators.
- Simplify.
Example: Adding Rational Expressions
Add the rational expressions:Answer: First, we have to find the LCD. In this case, the LCD will be [latex]xy[/latex]. We then multiply each expression by the appropriate form of 1 to obtain [latex]xy[/latex] as the denominator for each fraction.
Analysis of the Solution
Multiplying by [latex]\dfrac{y}{y}[/latex] or [latex]\dfrac{x}{x}[/latex] does not change the value of the original expression because any number divided by itself is 1, and multiplying an expression by 1 gives the original expression.Try It
[ohm_question]110918-110919[/ohm_question]Example: Subtracting Rational Expressions
Subtract the rational expressions:Answer:
[latex]\begin{array}{cc}\dfrac{6}{{\left(x+2\right)}^{2}}-\dfrac{2}{\left(x+2\right)\left(x - 2\right)}\hfill & \text{Factor}.\hfill \\ \dfrac{6}{{\left(x+2\right)}^{2}}\cdot \dfrac{x - 2}{x - 2}-\dfrac{2}{\left(x+2\right)\left(x - 2\right)}\cdot \dfrac{x+2}{x+2}\hfill & \text{Multiply each fraction to get the LCD as the denominator}.\hfill \\ \dfrac{6\left(x - 2\right)}{{\left(x+2\right)}^{2}\left(x - 2\right)}-\dfrac{2\left(x+2\right)}{{\left(x+2\right)}^{2}\left(x - 2\right)}\hfill & \text{Multiply}.\hfill \\ \dfrac{6x - 12-\left(2x+4\right)}{{\left(x+2\right)}^{2}\left(x - 2\right)}\hfill & \text{Apply distributive property}.\hfill \\ \dfrac{4x - 16}{{\left(x+2\right)}^{2}\left(x - 2\right)}\hfill & \text{Subtract}.\hfill \\ \dfrac{4\left(x - 4\right)}{{\left(x+2\right)}^{2}\left(x - 2\right)}\hfill & \text{Simplify}.\hfill \end{array}[/latex]
Q & A
Do we have to use the LCD to add or subtract rational expressions? No. Any common denominator will work, but it is easiest to use the LCD.Try It
Subtract the rational expressions: [latex]\dfrac{3}{x+5}-\dfrac{1}{x - 3}[/latex].Answer: [latex]\dfrac{2\left(x - 7\right)}{\left(x+5\right)\left(x - 3\right)}[/latex]
[ohm_question]39519[/ohm_question]Simplifying Complex Rational Expressions
A complex rational expression is a rational expression that contains additional rational expressions in the numerator, the denominator, or both. We can simplify complex rational expressions by rewriting the numerator and denominator as single rational expressions and dividing. The complex rational expression [latex]\dfrac{a}{\dfrac{1}{b}+c}[/latex] can be simplified by rewriting the numerator as the fraction [latex]\dfrac{a}{1}[/latex] and combining the expressions in the denominator as [latex]\dfrac{1+bc}{b}[/latex]. We can then rewrite the expression as a multiplication problem using the reciprocal of the denominator. We get [latex]\dfrac{a}{1}\cdot \dfrac{b}{1+bc}[/latex] which is equal to [latex]\dfrac{ab}{1+bc}[/latex].How To: Given a complex rational expression, simplify it
- Combine the expressions in the numerator into a single rational expression by adding or subtracting.
- Combine the expressions in the denominator into a single rational expression by adding or subtracting.
- Rewrite as the numerator divided by the denominator.
- Rewrite as multiplication.
- Multiply.
- Simplify.
Example: Simplifying Complex Rational Expressions
Simplify: [latex]\dfrac{y+\dfrac{1}{x}}{\dfrac{x}{y}}[/latex] .Answer: Begin by combining the expressions in the numerator into one expression.
Try It
Simplify: [latex]\dfrac{\dfrac{x}{y}-\dfrac{y}{x}}{y}[/latex]Answer: [latex]\dfrac{{x}^{2}-{y}^{2}}{x{y}^{2}}[/latex]
[ohm_question]3078-3080-59554[/ohm_question]Q & A
Can a complex rational expression always be simplified? Yes. We can always rewrite a complex rational expression as a simplified rational expression.Licenses & Attributions
CC licensed content, Original
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
CC licensed content, Shared previously
- College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].
- Question ID 110918, 110919. Authored by: Lumen Learning. License: CC BY: Attribution. License terms: IMathAS Community License CC- BY + GPL.
- Question ID 39519. Authored by: Roy Shahbazian. License: CC BY: Attribution. License terms: IMathAS Community License CC- BY + GPL.
- Question ID 3078, 3080. Authored by: Tophe Anderson. License: CC BY: Attribution. License terms: IMathAS Community License CC- BY + GPL.
- Question ID 59554. Authored by: Gary Parker. License: CC BY: Attribution. License terms: IMathAS Community License CC- BY + GPL.
CC licensed content, Specific attribution
- College Algebra. Provided by: OpenStax Authored by: OpenStax College Algebra. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution.