We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Guías de estudio > College Algebra CoRequisite Course

Graphing Linear Equations

Learning Outcomes

  • Plot linear equations in two variables on the coordinate plane.
  • Use intercepts to plot lines.
  • Use a graphing utility to graph a linear equation on a coordinate plane.
We can plot a set of points to represent an equation. When such an equation contains both an x variable and a y variable, it is called an equation in two variables. Its graph is called a graph in two variables. Any graph on a two-dimensional plane is a graph in two variables. Suppose we want to graph the equation [latex]y=2x - 1[/latex]. We can begin by substituting a value for x into the equation and determining the resulting value of y. Each pair of and y-values is an ordered pair that can be plotted. The table below lists values of x from –3 to 3 and the resulting values for y.
[latex]x[/latex] [latex]y=2x - 1[/latex] [latex]\left(x,y\right)[/latex]
[latex]-3[/latex] [latex]y=2\left(-3\right)-1=-7[/latex] [latex]\left(-3,-7\right)[/latex]
[latex]-2[/latex] [latex]y=2\left(-2\right)-1=-5[/latex] [latex]\left(-2,-5\right)[/latex]
[latex]-1[/latex] [latex]y=2\left(-1\right)-1=-3[/latex] [latex]\left(-1,-3\right)[/latex]
[latex]0[/latex] [latex]y=2\left(0\right)-1=-1[/latex] [latex]\left(0,-1\right)[/latex]
[latex]1[/latex] [latex]y=2\left(1\right)-1=1[/latex] [latex]\left(1,1\right)[/latex]
[latex]2[/latex] [latex]y=2\left(2\right)-1=3[/latex] [latex]\left(2,3\right)[/latex]
[latex]3[/latex] [latex]y=2\left(3\right)-1=5[/latex] [latex]\left(3,5\right)[/latex]
We can plot these points from the table. The points for this particular equation form a line, so we can connect them. This is not true for all equations. This is a graph of a line on an x, y coordinate plane. The x- and y-axis range from negative 8 to 8. A line passes through the points (-3, -7); (-2, -5); (-1, -3); (0, -1); (1, 1); (2, 3); and (3, 5). Note that the x-values chosen are arbitrary regardless of the type of equation we are graphing. Of course, some situations may require particular values of x to be plotted in order to see a particular result. Otherwise, it is logical to choose values that can be calculated easily, and it is always a good idea to choose values that are both negative and positive. There is no rule dictating how many points to plot, although we need at least two to graph a line. Keep in mind, however, that the more points we plot, the more accurately we can sketch the graph.

How To: Given an equation, graph by plotting points

  1. Make a table with one column labeled x, a second column labeled with the equation, and a third column listing the resulting ordered pairs.
  2. Enter x-values down the first column using positive and negative values. Selecting the x-values in numerical order will make graphing easier.
  3. Select x-values that will yield y-values with little effort, preferably ones that can be calculated mentally.
  4. Plot the ordered pairs.
  5. Connect the points if they form a line.

Example: Graphing an Equation in Two Variables by Plotting Points

Graph the equation [latex]y=-x+2[/latex] by plotting points.

Answer: First, we construct a table similar to the one below. Choose x values and calculate y.

[latex]x[/latex] [latex]y=-x+2[/latex] [latex]\left(x,y\right)[/latex]
[latex]-5[/latex] [latex]y=-\left(-5\right)+2=7[/latex] [latex]\left(-5,7\right)[/latex]
[latex]-3[/latex] [latex]y=-\left(-3\right)+2=5[/latex] [latex]\left(-3,5\right)[/latex]
[latex]-1[/latex] [latex]y=-\left(-1\right)+2=3[/latex] [latex]\left(-1,3\right)[/latex]
[latex]0[/latex] [latex]y=-\left(0\right)+2=2[/latex] [latex]\left(0,2\right)[/latex]
[latex]1[/latex] [latex]y=-\left(1\right)+2=1[/latex] [latex]\left(1,1\right)[/latex]
[latex]3[/latex] [latex]y=-\left(3\right)+2=-1[/latex] [latex]\left(3,-1\right)[/latex]
[latex]5[/latex] [latex]y=-\left(5\right)+2=-3[/latex] [latex]\left(5,-3\right)[/latex]
Now, plot the points. Connect them if they form a line. This image is a graph of a line on an x, y coordinate plane. The x-axis includes numbers that range from negative 7 to 7. The y-axis includes numbers that range from negative 5 to 8. A line passes through the points: (-5, 7); (-3, 5); (-1, 3); (0, 2); (1, 1); (3, -1); and (5, -3).

Try It

Construct a table and graph the equation by plotting points: [latex]y=\frac{1}{2}x+2[/latex].

Answer:

[latex]x[/latex] [latex]y=\frac{1}{2}x+2[/latex] [latex]\left(x,y\right)[/latex]
[latex]-2[/latex] [latex]y=\frac{1}{2}\left(-2\right)+2=1[/latex] [latex]\left(-2,1\right)[/latex]
[latex]-1[/latex] [latex]y=\frac{1}{2}\left(-1\right)+2=\frac{3}{2}[/latex] [latex]\left(-1,\frac{3}{2}\right)[/latex]
[latex]0[/latex] [latex]y=\frac{1}{2}\left(0\right)+2=2[/latex] [latex]\left(0,2\right)[/latex]
[latex]1[/latex] [latex]y=\frac{1}{2}\left(1\right)+2=\frac{5}{2}[/latex] [latex]\left(1,\frac{5}{2}\right)[/latex]
[latex]2[/latex] [latex]y=\frac{1}{2}\left(2\right)+2=3[/latex] [latex]\left(2,3\right)[/latex]
This is an image of a graph on an x, y coordinate plane. The x and y-axis range from negative 5 to 5. A line passes through the points (-2, 1); (-1, 3/2); (0, 2); (1, 5/2); and (2, 3).

Using a Graphing Utility to Plot Lines

You can use an online graphing calculator to quickly plot lines. Watch this short video Tutorial to learn how. [embed]https://youtu.be/cEIOdi2R4fE[/embed]

Try It

Desmos has a helpful feature that allows you to turn a constant (number) into a variable. Follow these steps to learn how:
  1. Graph the line [latex]y=-\frac{2}{3}x-\frac{4}{3}[/latex].
  2. On the next line enter [latex]y=-a x-\frac{4}{3}[/latex]. You will see a button pop up that says "add slider: a", click on the button. You will see the next line populated with the variable a and the interval on which a can take values.
  3. What part of a line does the variable a represent? The slope or the y-intercept?
Here is a short tutorial with more information about sliders. https://youtu.be/9MChp2P0vMA  

Licenses & Attributions

CC licensed content, Original

CC licensed content, Shared previously

  • College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. Located at: https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].
  • Learn Desmos: Lines. Authored by: Desmos. License: All Rights Reserved. License terms: Standard YouTube License.
  • Learn Desmos: Sliders. Authored by: Desmos. License: All Rights Reserved. License terms: Standard YouTube License.
  • Question ID 110939. Authored by: Lumen Learning. License: CC BY: Attribution. License terms: IMathAS Community License CC- BY + GPL.
  • Question ID 92757. Authored by: Michael Jenck. License: CC BY: Attribution. License terms: IMathAS Community License CC- BY + GPL.