Solving Equations By Clearing Fractions
Learning Outcomes
- Use the least common denominator to eliminate fractions from a linear equation before solving it
- Solve equations with fractions that require several steps
EXAMPLE
Solve: [latex]\Large\frac{1}{8}\normalsize x+\Large\frac{1}{2}=\Large\frac{1}{4}[/latex] Solution:[latex]\Large\frac{1}{8}\normalsize x+\Large\frac{1}{2}=\Large\frac{1}{4}\normalsize\quad{LCD=8}[/latex] | |
Multiply both sides of the equation by that LCD, [latex]8[/latex]. This clears the fractions. | [latex]\color{red}{8(}\Large\frac{1}{8}\normalsize x+\Large\frac{1}{2}\color{red}{)}=\normalsize\color{red}{8(}\Large\frac{1}{4}\color{red}{)}[/latex] |
Use the Distributive Property. | [latex]8\cdot\Large\frac{1}{8}\normalsize x+8\cdot\Large\frac{1}{2}\normalsize=8\cdot\Large\frac{1}{4}[/latex] |
Simplify — and notice, no more fractions! | [latex]x+4=2[/latex] |
Solve using the General Strategy for Solving Linear Equations. | [latex]x+4\color{red}{-4}=2\color{red}{-4}[/latex] |
Simplify. | [latex]x=-2[/latex] |
Check: Let [latex]x=-2[/latex][latex] \Large\frac{1}{8}\normalsize x+ \Large\frac{1}{2}= \Large\frac{1}{4}[/latex] [latex] \Large\frac{1}{8}\normalsize(\color{red}{-2})+ \Large\frac{1}{2}\normalsize\stackrel{\text{?}}{=} \Large\frac{1}{4}[/latex] [latex] \Large\frac{-2}{8}+ \Large\frac{1}{2}\normalsize\stackrel{\text{?}}{=} \Large\frac{1}{4}[/latex] [latex] \Large\frac{-2}{8}+ \Large\frac{4}{8}\normalsize\stackrel{\text{?}}{=} \Large\frac{1}{4}[/latex] [latex] \Large\frac{2}{8}\normalsize\stackrel{\text{?}}{=} \Large\frac{1}{4}[/latex] [latex] \Large\frac{1}{4}= \Large\frac{1}{4}\quad\checkmark[/latex] |
Try it
[embed]Solve equations by clearing the Denominators
- Find the least common denominator of all the fractions in the equation.
- Multiply both sides of the equation by that LCD. This clears the fractions.
- Isolate the variable terms on one side, and the constant terms on the other side.
- Simplify both sides.
- Use the multiplication or division property to make the coefficient on the variable equal to [latex]1[/latex].
Example
Solve: [latex]7=\Large\frac{1}{2}\normalsize x+\Large\frac{3}{4}\normalsize x-\Large\frac{2}{3}\normalsize x[/latex]
Answer: Solution: We want to clear the fractions by multiplying both sides of the equation by the LCD of all the fractions in the equation.
Find the least common denominator of all the fractions in the equation. | [latex]7=\Large\frac{1}{2}\normalsize x+\Large\frac{3}{4}\normalsize x-\Large\frac{2}{3}\normalsize x\quad{LCD=12}[/latex] |
Multiply both sides of the equation by [latex]12[/latex]. | [latex]\color{red}{12}(7)=\color{red}{12}\cdot\Large(\frac{1}{2}\normalsize x+\Large\frac{3}{4}\normalsize x-\Large\frac{2}{3}\normalsize x\Large)[/latex] |
Distribute. | [latex]12(7)=12\cdot\Large\frac{1}{2}\normalsize x+12\cdot\Large\frac{3}{4}\normalsize x-12\cdot\Large\frac{2}{3}\normalsize x[/latex] |
Simplify — and notice, no more fractions! | [latex]84=6x+9x-8x[/latex] |
Combine like terms. | [latex]84=7x[/latex] |
Divide by [latex]7[/latex]. | [latex]\Large\frac{84}{\color{red}{7}}=\Large\frac{7x}{\color{red}{7}}[/latex] |
Simplify. | [latex]12=x[/latex] |
Check: Let [latex]x=12[/latex]. | |
[latex]7=\Large\frac{1}{2}\normalsize x+ \Large\frac{3}{4}\normalsize x- \Large\frac{2}{3}\normalsize x[/latex] [latex]7\stackrel{\text{?}}{=} \Large\frac{1}{2}\normalsize(\color{red}{12})+ \Large\frac{3}{4}\normalsize(\color{red}{12})- \Large\frac{2}{3}\normalsize(\color{red}{12})[/latex] [latex-display]7\stackrel{\text{?}}{=}6+9-8[/latex-display] [latex-display]7=7\quad\checkmark[/latex-display] |
Try it
[embed]Caution!
One of the most common mistakes when you clear fractions is forgetting to multiply BOTH sides of the equation by the LCD. If your answer doesn't check, make sure you have multiplied both sides of the equation by the LCD.Example
Solve: [latex]x+\Large\frac{1}{3}=\Large\frac{1}{6}\normalsize x-\Large\frac{1}{2}[/latex]
Answer: Solution:
Find the LCD of all the fractions in the equation. | [latex]x+\Large\frac{1}{3}=\Large\frac{1}{6}\normalsize x-\Large\frac{1}{2}\normalsize,\quad{LCD=6}[/latex] |
Multiply both sides by the LCD. | [latex]\color{red}{6}(x+\Large\frac{1}{3}\normalsize)=\color{red}{6}(\Large\frac{1}{6}\normalsize x-\Large\frac{1}{2})[/latex] |
Distribute. | [latex]6\cdot{x}+6\cdot\Large\frac{1}{3}\normalsize=6\cdot\Large\frac{1}{6}\normalsize x-6\cdot\Large\frac{1}{2}[/latex] |
Simplify — no more fractions! | [latex]6x+2=x-3[/latex] |
Subtract [latex]x[/latex] from both sides. | [latex]6x-\color{red}{x}+2=x-\color{red}{x}-3[/latex] |
Simplify. | [latex]5x+2=-3[/latex] |
Subtract 2 from both sides. | [latex]5x+2\color{red}{-2}=-3\color{red}{-2}[/latex] |
Simplify. | [latex]5x=-5[/latex] |
Divide by [latex]5[/latex]. | [latex]\Large\frac{5x}{\color{red}{5}}=\Large\frac{-5}{\color{red}{5}}[/latex] |
Simplify. | [latex]x=-1[/latex] |
Check: Substitute [latex]x=-1[/latex]. | |
[latex]x+\Large\frac{1}{3}= \Large\frac{1}{6}\normalsize x- \Large\frac{1}{2}[/latex] [latex](\color{red}{-1})+ \Large\frac{1}{3}\normalsize\stackrel{\text{?}}{=} \Large\frac{1}{6}\normalsize(\color{red}{-1})- \Large\frac{1}{2}[/latex] [latex](-1)+ \Large\frac{1}{3}\normalsize\stackrel{\text{?}}{=}- \Large\frac{1}{6}- \Large\frac{1}{2}[/latex] [latex]- \Large\frac{3}{3}+ \Large\frac{1}{3}\normalsize\stackrel{\text{?}}{=}- \Large\frac{1}{6}- \Large\frac{3}{6}[/latex] [latex]- \Large\frac{2}{3}\normalsize\stackrel{\text{?}}{=}- \Large\frac{4}{6}[/latex] [latex]- \Large\frac{2}{3}=- \Large\frac{2}{3}\quad\checkmark[/latex] |
Try it
[embed]EXAMPLE
Solve: [latex]1=\Large\frac{1}{2}\normalsize\left(4x+2\right)[/latex]
Answer: Solution:
[latex]1=\Large\frac{1}{2}\normalsize(4x+2)[/latex] | |
Distribute. | [latex]1=\Large\frac{1}{2}\normalsize\cdot4x+\Large\frac{1}{2}\normalsize\cdot2[/latex] |
Simplify. Now there are no fractions to clear! | [latex]1=2x+1[/latex] |
Subtract 1 from both sides. | [latex]1\color{red}{-1}=2x+1\color{red}{-1}[/latex] |
Simplify. | [latex]0=2x[/latex] |
Divide by [latex]2[/latex]. | [latex]\Large\frac{0}{\color{red}{2}}=\Large\frac{2x}{\color{red}{2}}[/latex] |
Simplify. | [latex]0=x[/latex] |
Check: Let [latex]x=0[/latex]. | |
[latex]1=\Large\frac{1}{2}\normalsize(4x+2)[/latex] [latex]1\stackrel{\text{?}}{=} \Large\frac{1}{2}\normalsize(4(\color{red}{0})+2)[/latex] [latex]1\stackrel{\text{?}}{=} \Large\frac{1}{2}\normalsize(2)[/latex] [latex]1\stackrel{\text{?}}{=} \Large\frac{2}{2}[/latex] [latex-display]1=1\quad\checkmark[/latex-display] |
Try it
[embed]Licenses & Attributions
CC licensed content, Original
- Question ID 142514, 142542. Authored by: Lumen Learning. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Solve a Linear Equation with Parentheses and a Fraction 2/3(9x-12)=8+2x. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
CC licensed content, Shared previously
- Ex 1: Solve an Equation with Fractions with Variable Terms on Both Sides. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
- Question ID 71948. Authored by: Alyson Day. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
CC licensed content, Specific attribution
- Prealgebra. Provided by: OpenStax License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].