Using the Identity and Inverse Properties of Addition and Subtraction
Learning Outcomes
- Identify the identity properties of multiplication and addition
- Use the inverse property of addition and multiplication to simplify expressions
Recognize the Identity Properties of Addition and Multiplication
What happens when we add zero to any number? Adding zero doesn’t change the value. For this reason, we call [latex]0[/latex] the additive identity. For example,[latex]\begin{array}{ccccc}\hfill 13+0\hfill & & \hfill -14+0\hfill & & \hfill 0+\left(-3x\right)\hfill \\ \hfill 13\hfill & & \hfill -14\hfill & & \hfill -3x\hfill \end{array}[/latex]
What happens when you multiply any number by one? Multiplying by one doesn’t change the value. So we call [latex]1[/latex] the multiplicative identity. For example,[latex]\begin{array}{ccccc}\hfill 43\cdot 1\hfill & & \hfill -27\cdot 1\hfill & & \hfill 1\cdot \frac{6y}{5}\hfill \\ \hfill 43\hfill & & \hfill -27\hfill & & \hfill \frac{6y}{5}\hfill \end{array}[/latex]
Identity Properties
The Identity Property of Addition: for any real number [latex]a[/latex],[latex]\begin{array}{}\\ \hfill a+0=a(0)+a=a\hfill \\ \hfill \text{0 is called the}\mathbf{\text{ additive identity}}\hfill \end{array}[/latex]
The Identity Property of Multiplication: for any real number [latex]a[/latex][latex]\begin{array}{c}\hfill a\cdot 1=a(1)\cdot a=a\hfill \\ \hfill \text{1 is called the}\mathbf{\text{ multiplicative identity}}\hfill \end{array}[/latex]
example
Identify whether each equation demonstrates the identity property of addition or multiplication. 1. [latex]7+0=7[/latex] 2. [latex]-16\left(1\right)=-16[/latex] Solution:1. | |
[latex]7+0=7[/latex] | |
We are adding 0. | We are using the identity property of addition. |
2. | |
[latex]-16\left(1\right)=-16[/latex] | |
We are multiplying by 1. | We are using the identity property of multiplication. |
try it
[ohm_question]146481[/ohm_question]Use the Inverse Properties of Addition and Multiplication
What number added to 5 gives the additive identity, 0? | |
[latex]5 + =0[/latex] | We know [latex]5+(\color {red}{--5})=0[/latex] |
What number added to −6 gives the additive identity, 0? | |
[latex]-6 + =0[/latex] | We know [latex]--6+\color {red}{6}=0[/latex] |
[latex]\Large\frac{2}{3}\normalsize\cdot =1[/latex] | We know [latex]\Large\frac{2}{3}\normalsize\cdot\color{red}{\Large\frac{3}{2}}\normalsize=1[/latex] |
[latex]2\cdot =1[/latex] | We know [latex]2\cdot\color{red}{\Large\frac{1}{2}}\normalsize=1[/latex] |
Inverse Properties
Inverse Property of Addition for any real number [latex]a[/latex],[latex]\begin{array}{}\\ \hfill a+\left(-a\right)=0\hfill \\ \hfill -a\text{ is the}\mathbf{\text{ additive inverse }}\text{of }a.\hfill \end{array}[/latex]
Inverse Property of Multiplication for any real number [latex]a\ne 0[/latex],
[latex]\begin{array}{}\\ \\ \hfill a\cdot \frac{1}{a}=1\hfill \\ \hfill \frac{1}{a}\text{is the}\mathbf{\text{ multiplicative inverse }}\text{of }a.\hfill \end{array}[/latex]
example
Find the additive inverse of each expression: 1. [latex]13[/latex] 2. [latex]-\Large\frac{5}{8}[/latex] 3. [latex]0.6[/latex]Answer: Solution: To find the additive inverse, we find the opposite. 1. The additive inverse of [latex]13[/latex] is its opposite, [latex]-13[/latex] 2. The additive inverse of [latex]-\Large\frac{5}{8}[/latex] is its opposite, [latex]\Large\frac{5}{8}[/latex] 3. The additive inverse of [latex]0.6[/latex] is its opposite, [latex]-0.6[/latex]
try it
[ohm_question]146482[/ohm_question]example
Find the multiplicative inverse: 1. [latex]9[/latex] 2. [latex]-\Large\frac{1}{9}[/latex] 3. [latex]0.9[/latex]Answer: Solution: To find the multiplicative inverse, we find the reciprocal. 1. The multiplicative inverse of [latex]9[/latex] is its reciprocal, [latex]\Large\frac{1}{9}[/latex] 2. The multiplicative inverse of [latex]-\Large\frac{1}{9}[/latex] is its reciprocal, [latex]-9[/latex] 3. To find the multiplicative inverse of [latex]0.9[/latex], we first convert [latex]0.9[/latex] to a fraction, [latex]\Large\frac{9}{10}[/latex]. Then we find the reciprocal, [latex]\Large\frac{10}{9}[/latex]
try it
[ohm_question]146483[/ohm_question] [ohm_question]146519[/ohm_question] [ohm_question]146520[/ohm_question]Licenses & Attributions
CC licensed content, Original
- Question ID 146520, 146519, 146483, 146482, 146481. Authored by: Lumen Learning. License: CC BY: Attribution.
CC licensed content, Specific attribution
- Prealgebra. Provided by: OpenStax License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].