Simplifying Radical Expressions
Learning Outcomes
- Simplify radical expressions using factoring
- Use rational exponents to simplify radical expressions
- Define [latex]\sqrt{x^2}=|x|[/latex] and apply it when simplifying radical expressions
[latex] {{\left( 3x \right)}^{\frac{1}{2}}}={{3}^{\frac{1}{2}}}\cdot {{x}^{\frac{1}{2}}}[/latex]
And since you know that raising a number to the [latex] \frac{1}{2}[/latex] power is the same as taking the square root of that number, you can also write it this way.[latex] \sqrt{3x}=\sqrt{3}\cdot \sqrt{x}[/latex]
Look at that—you can think of any number underneath a radical as the product of separate factors, each underneath its own radical.A Product Raised to a Power Rule or sometimes called The Square Root of a Product Rule
For any real numbers a and b, [latex] \sqrt{ab}=\sqrt{a}\cdot \sqrt{b}[/latex]. For example: [latex] \sqrt{100}=\sqrt{10}\cdot \sqrt{10}[/latex], and [latex] \sqrt{75}=\sqrt{25}\cdot \sqrt{3}[/latex]The square root of a product rule will help us simplify roots that are not perfect as is shown the following example.
Example
Simplify. [latex] \sqrt{63}[/latex]Answer: [latex]63[/latex] is not a perfect square so we can use the square root of a product rule to simplify any factors that are perfect squares. Factor [latex]63[/latex] into [latex]7[/latex] and [latex]9[/latex]. [latex-display] \sqrt{7\cdot 9}[/latex-display] [latex]9[/latex] is a perfect square, [latex]9=3^2[/latex], therefore we can rewrite the radicand. [latex-display] \sqrt{7\cdot {{3}^{2}}}[/latex-display] Using the Product Raised to a Power rule, separate the radical into the product of two factors, each under a radical. [latex-display] \sqrt{7}\cdot \sqrt{{{3}^{2}}}[/latex-display] Take the square root of [latex]3^{2}[/latex]. [latex-display] \sqrt{7}\cdot 3[/latex-display] Rearrange factors so the integer appears before the radical and then multiply. This is done so that it is clear that only the [latex]7[/latex] is under the radical, not the [latex]3[/latex]. [latex-display] 3\cdot \sqrt{7}[/latex-display] The answer is [latex]3\sqrt{7}[/latex].
[latex]x[/latex] | [latex]x^{2}[/latex] | [latex]\sqrt{x^{2}}[/latex] | [latex]\left|x\right|[/latex] |
---|---|---|---|
[latex]−5[/latex] | [latex]25[/latex] | [latex]5[/latex] | [latex]5[/latex] |
[latex]−2[/latex] | [latex]4[/latex] | [latex]2[/latex] | [latex]2[/latex] |
[latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] |
[latex]6[/latex] | [latex]36[/latex] | [latex]6[/latex] | [latex]6[/latex] |
[latex]10[/latex] | [latex]100[/latex] | [latex]10[/latex] | [latex]10[/latex] |
Try It
[ohm_question]101176[/ohm_question]Taking the Square Root of a Radical Expression
When finding the square root of an expression that contains variables raised to an even power, remember that [latex]\sqrt{x^{2}}=\left|x\right|[/latex]. Examples: [latex]\sqrt{9x^{2}}=3\left|x\right|[/latex], and [latex]\sqrt{16{{x}^{2}}{{y}^{2}}}=4\left|xy\right|[/latex]Example
Simplify. [latex] \sqrt{{{a}^{3}}{{b}^{5}}{{c}^{2}}}[/latex]Answer: Factor to find variables with even exponents. [latex-display] \sqrt{{{a}^{2}}\cdot a\cdot {{b}^{4}}\cdot b\cdot {{c}^{2}}}[/latex-display] Rewrite [latex]b^{4}[/latex] as [latex]\left(b^{2}\right)^{2}[/latex]. [latex-display] \sqrt{{{a}^{2}}\cdot a\cdot {{({{b}^{2}})}^{2}}\cdot b\cdot {{c}^{2}}}[/latex-display] Separate the squared factors into individual radicals. [latex-display] \sqrt{{{a}^{2}}}\cdot \sqrt{{{({{b}^{2}})}^{2}}}\cdot \sqrt{{{c}^{2}}}\cdot \sqrt{a\cdot b}[/latex-display] Take the square root of each radical. Remember that [latex] \sqrt{{{a}^{2}}}=\left| a \right|[/latex]. [latex-display] \left| a \right|\cdot {{b}^{2}}\cdot \left|{c}\right|\cdot \sqrt{a\cdot b}[/latex-display] Simplify and multiply. [latex-display] \left| ac \right|{{b}^{2}}\sqrt{ab}[/latex-display]
Analysis of the Solution
Why did we not write [latex]b^2[/latex] as [latex]|b^2|[/latex]? Because when you square a number, you will always get a positive result, so the principal square root of [latex]\left(b^2\right)^2[/latex] will always be non-negative. One tip for knowing when to apply the absolute value after simplifying any even indexed root is to look at the final exponent on your variable terms. If the exponent is odd - including [latex]1[/latex] - add an absolute value. This applies to simplifying any root with an even index, as we will see in later examples. In the following video, you will see more examples of how to simplify radical expressions with variables. https://youtu.be/q7LqsKPoAKo We will show another example where the simplified expression contains variables with both odd and even powers.Example
Simplify. [latex] \sqrt{9{{x}^{6}}{{y}^{4}}}[/latex]Answer: Factor to find identical pairs.
[latex] \sqrt{3\cdot 3\cdot {{x}^{3}}\cdot {{x}^{3}}\cdot {{y}^{2}}\cdot {{y}^{2}}}[/latex]
Rewrite the pairs as perfect squares.[latex] \sqrt{{{3}^{2}}\cdot {{\left( {{x}^{3}} \right)}^{2}}\cdot {{\left( {{y}^{2}} \right)}^{2}}}[/latex]
Separate into individual radicals.[latex] \sqrt{{{3}^{2}}}\cdot \sqrt{{{\left( {{x}^{3}} \right)}^{2}}}\cdot \sqrt{{{\left( {{y}^{2}} \right)}^{2}}}[/latex]
Simplify.[latex] 3{{x}^{3}}{{y}^{2}}[/latex]
Because x has an odd power, we will add the absolute value for our final solution.
[latex] 3|{{x}^{3}}|{{y}^{2}}[/latex]
Example
Simplify. [latex] {{(36{{x}^{4}})}^{\frac{1}{2}}}[/latex]Answer: Rewrite the expression with the fractional exponent as a radical.
[latex] \sqrt{36{{x}^{4}}}[/latex]
Find the square root of both the coefficient and the variable.[latex]\begin{array}{r} \sqrt{{{6}^{2}}\cdot {{x}^{4}}}\\\sqrt{{{6}^{2}}}\cdot \sqrt{{{x}^{4}}}\\\sqrt{{{6}^{2}}}\cdot \sqrt{{{({{x}^{2}})}^{2}}}\\6\cdot{x}^{2}\end{array}[/latex]
The answer is [latex]6{{x}^{2}}[/latex].Example
Simplify. [latex] \sqrt{49{{x}^{10}}{{y}^{8}}}[/latex]Answer: Look for squared numbers and variables. Factor [latex]49[/latex] into [latex]7\cdot7[/latex], [latex]x^{10}[/latex] into [latex]x^{5}\cdot{x}^{5}[/latex], and [latex]y^{8}[/latex] into [latex]y^{4}\cdot{y}^{4}[/latex].
[latex] \sqrt{7\cdot 7\cdot {{x}^{5}}\cdot {{x}^{5}}\cdot {{y}^{4}}\cdot {{y}^{4}}}[/latex]
Rewrite the pairs as squares.[latex] \sqrt{{{7}^{2}}\cdot {{({{x}^{5}})}^{2}}\cdot {{({{y}^{4}})}^{2}}}[/latex]
Separate the squared factors into individual radicals.[latex] \sqrt{{{7}^{2}}}\cdot \sqrt{{{({{x}^{5}})}^{2}}}\cdot \sqrt{{{({{y}^{4}})}^{2}}}[/latex]
Take the square root of each radical using the rule that [latex] \sqrt{{{x}^{2}}}=x[/latex].[latex] 7\cdot {{x}^{5}}\cdot {{y}^{4}}[/latex]
Multiply.[latex] 7{{x}^{5}}{{y}^{4}}[/latex]
Try It
[ohm_question]8597[/ohm_question]Simplify Cube Roots
We can use the same techniques we have used for simplifying square roots to simplify higher order roots. For example, to simplify a cube root, the goal is to find factors under the radical that are perfect cubes so that you can take their cube root. We no longer need to be concerned about whether we have identified the principal root since we are now finding cube roots. Focus on finding identical trios of factors as you simplify.Example
Simplify. [latex] \sqrt[3]{{{a}^{6}}}[/latex]Answer: Rewrite by factoring out cubes.
[latex] \sqrt[3]{{{a}^{3}}\cdot {{a}^{3}}}[/latex]
Write each factor under its own radical and simplify.[latex] \begin{array}{r}\sqrt[3]{{{a}^{3}}}\cdot \sqrt[3]{{{a}^{3}}}\\a\cdot{a}\end{array}[/latex]
Answer
[latex-display] \sqrt[3]{{{a}^{6}}}={{a}^{2}}[/latex-display]Example
Simplify. [latex] \sqrt[3]{40{{m}^{5}}}[/latex]Answer: Factor [latex]40[/latex] into prime factors. [latex-display] \sqrt[3]{5\cdot 2\cdot 2\cdot 2\cdot {{m}^{5}}}[/latex-display] Since you are looking for the cube root, you need to find factors that appear [latex]3[/latex] times under the radical. Rewrite [latex] 2\cdot 2\cdot 2[/latex] as [latex] {{2}^{3}}[/latex]. [latex-display] \sqrt[3]{{{2}^{3}}\cdot 5\cdot {{m}^{5}}}[/latex-display] Rewrite [latex] {{m}^{5}}[/latex] as [latex] {{m}^{3}}\cdot {{m}^{2}}[/latex]. [latex-display] \sqrt[3]{{{2}^{3}}\cdot 5\cdot {{m}^{3}}\cdot {{m}^{2}}}[/latex-display] Rewrite the expression as a product of multiple radicals. [latex-display] \sqrt[3]{{{2}^{3}}}\cdot \sqrt[3]{5}\cdot \sqrt[3]{{{m}^{3}}}\cdot \sqrt[3]{{{m}^{2}}}[/latex-display] Simplify and multiply. [latex-display] 2\cdot \sqrt[3]{5}\cdot m\cdot \sqrt[3]{{{m}^{2}}}[/latex-display] The answer is [latex]2m\sqrt[3]{5{{m}^{2}}}[/latex].
Example
Simplify. [latex] \sqrt[3]{-27{{x}^{4}}{{y}^{3}}}[/latex]Answer: Factor the expression into cubes. Separate the cubed factors into individual radicals. [latex-display]\begin{array}{r}\sqrt[3]{-1\cdot 27\cdot {{x}^{4}}\cdot {{y}^{3}}}\\\sqrt[3]{{{(-1)}^{3}}\cdot {{(3)}^{3}}\cdot {{x}^{3}}\cdot x\cdot {{y}^{3}}}\\\sqrt[3]{{{(-1)}^{3}}}\cdot \sqrt[3]{{{(3)}^{3}}}\cdot \sqrt[3]{{{x}^{3}}}\cdot \sqrt[3]{x}\cdot \sqrt[3]{{{y}^{3}}}\end{array}[/latex-display] Simplify the cube roots. [latex-display] -1\cdot 3\cdot x\cdot y\cdot \sqrt[3]{x}[/latex-display] The answer is [latex] \sqrt[3]{-27{{x}^{4}}{{y}^{3}}}=-3xy\sqrt[3]{x}[/latex].
Example
Simplify. [latex] \sqrt[3]{-24{{a}^{5}}}[/latex]Answer: Factor [latex]−24[/latex] to find perfect cubes. Here, [latex]−1[/latex] and [latex]8[/latex] are the perfect cubes.
[latex] \sqrt[3]{-1\cdot 8\cdot 3\cdot {{a}^{5}}}[/latex]
Factor variables. You are looking for cube exponents, so you factor [latex]a^{5}[/latex] into [latex]a^{3}[/latex] and [latex]a^{2}[/latex].[latex] \sqrt[3]{{{(-1)}^{3}}\cdot {{2}^{3}}\cdot 3\cdot {{a}^{3}}\cdot {{a}^{2}}}[/latex]
Separate the factors into individual radicals.[latex] \sqrt[3]{{{(-1)}^{3}}}\cdot \sqrt[3]{{{2}^{3}}}\cdot \sqrt[3]{{{a}^{3}}}\cdot \sqrt[3]{3\cdot {{a}^{2}}}[/latex]
Simplify, using the property [latex] \sqrt[3]{{{x}^{3}}}=x[/latex].[latex] -1\cdot 2\cdot a\cdot \sqrt[3]{3\cdot {{a}^{2}}}[/latex]
This is the simplest form of this expression; all cubes have been pulled out of the radical expression.[latex] -2a\sqrt[3]{3{{a}^{2}}}[/latex]
Simplifying Fourth Roots
Now let us move to simplifying fourth degree roots. No matter what root you are simplifying, the same idea applies: find cubes for cube roots, powers of four for fourth roots, etc. Recall that when your simplified expression contains an even indexed radical and a variable factor with an odd exponent, you need to apply an absolute value.Example
Simplify. [latex] \sqrt[4]{81{{x}^{8}}{{y}^{3}}}[/latex]Answer: Rewrite the expression. [latex-display] \sqrt[4]{81}\cdot \sqrt[4]{{{x}^{8}}}\cdot \sqrt[4]{{{y}^{3}}}[/latex-display] Factor each radicand. [latex-display] \sqrt[4]{3\cdot 3\cdot 3\cdot 3}\cdot \sqrt[4]{{{x}^{2}}\cdot {{x}^{2}}\cdot {{x}^{2}}\cdot {{x}^{2}}}\cdot \sqrt[4]{{{y}^{3}}}[/latex-display] Simplify. [latex-display]\begin{array}{r}\sqrt[4]{{{3}^{4}}}\cdot \sqrt[4]{{{({{x}^{2}})}^{4}}}\cdot \sqrt[4]{{{y}^{3}}}\\3\cdot {{x}^{2}}\cdot \sqrt[4]{{{y}^{3}}}\end{array}[/latex-display] The answer is [latex]\sqrt[4]{81x^{8}y^{3}}=3x^{2}\sqrt[4]{y^{3}} [/latex].
Example
Simplify. [latex] \sqrt[4]{81{{x}^{8}}{{y}^{3}}}[/latex]Answer: Rewrite the radical using rational exponents. [latex-display] {{(81{{x}^{8}}{{y}^{3}})}^{\frac{1}{4}}}[/latex-display] Use the rules of exponents to simplify the expression. [latex-display] \begin{array}{r}{{81}^{\frac{1}{4}}}\cdot {{x}^{\frac{8}{4}}}\cdot {{y}^{\frac{3}{4}}}\\{{(3\cdot 3\cdot 3\cdot 3)}^{\frac{1}{4}}}{{x}^{2}}{{y}^{\frac{3}{4}}}\\{{({{3}^{4}})}^{\frac{1}{4}}}{{x}^{2}}{{y}^{\frac{3}{4}}}\\3{{x}^{2}}{{y}^{\frac{3}{4}}}\end{array}[/latex-display] Change the expression with the rational exponent back to radical form. [latex-display] 3{{x}^{2}}\sqrt[4]{{{y}^{3}}}[/latex-display]
Example
Simplify. [latex]\dfrac{10{{b}^{2}}{{c}^{2}}}{c\sqrt[3]{8{{b}^{4}}}}[/latex]Answer: Separate the factors in the denominator. [latex-display] \frac{10{{b}^{2}}{{c}^{2}}}{c\cdot \sqrt[3]{8}\cdot \sqrt[3]{{{b}^{4}}}}[/latex-display] Take the cube root of [latex]8[/latex], which is [latex]2[/latex]. [latex-display] \frac{10{{b}^{2}}{{c}^{2}}}{c\cdot 2\cdot \sqrt[3]{{{b}^{4}}}}[/latex-display] Rewrite the radical using a fractional exponent. [latex-display] \frac{10{{b}^{2}}{{c}^{2}}}{c\cdot 2\cdot {{b}^{\frac{4}{3}}}}[/latex-display] Rewrite the fraction as a series of factors in order to cancel factors (see next step). [latex-display] \frac{10}{2}\cdot \frac{{{c}^{2}}}{c}\cdot \frac{{{b}^{2}}}{{{b}^{\frac{4}{3}}}}[/latex-display] Simplify the constant and c factors. [latex-display] 5\cdot c\cdot \frac{{{b}^{2}}}{{{b}^{\frac{4}{3}}}}[/latex-display] Use the rule of negative exponents, n-x=[latex] \frac{1}{{{n}^{x}}}[/latex], to rewrite [latex] \frac{1}{{{b}^{\tfrac{4}{3}}}}[/latex] as [latex] {{b}^{-\tfrac{4}{3}}}[/latex]. [latex-display] 5c{{b}^{2}}{{b}^{-\ \frac{4}{3}}}[/latex-display] Combine the b factors by adding the exponents. [latex-display] 5c{{b}^{\frac{2}{3}}}[/latex-display] Change the expression with the fractional exponent back to radical form. By convention, an expression is not usually considered simplified if it has a fractional exponent or a radical in the denominator. [latex-display] 5c\sqrt[3]{{{b}^{2}}}[/latex-display]
Summary
A radical expression is a mathematical way of representing the nth root of a number. Square roots and cube roots are the most common radicals, but a root can be any number. To simplify radical expressions, look for exponential factors within the radical, and then use the property [latex] \sqrt[n]{{{x}^{n}}}=x[/latex] if n is odd and [latex] \sqrt[n]{{{x}^{n}}}=\left| x \right|[/latex] if n is even to pull out quantities. All rules of integer operations and exponents apply when simplifying radical expressions. The steps to consider when simplifying a radical are outlined below.Simplifying a radical
When working with exponents and radicals:- If n is odd, [latex] \sqrt[n]{{{x}^{n}}}=x[/latex].
- If n is even, [latex] \sqrt[n]{{{x}^{n}}}=\left| x \right|[/latex]. (The absolute value accounts for the fact that if x is negative and raised to an even power, that number will be positive, as will the nth principal root of that number.)
Contribute!
Licenses & Attributions
CC licensed content, Original
- Simplify Square Roots (Not Perfect Square Radicands). Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
- Simplify Square Roots with Variables. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Simplify Cube Roots (Not Perfect Cube Radicands). Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Simplify Nth Roots with Variables. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Simplify Radicals Using Rational Exponents. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Abramson, Jay. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution. License terms: Download for free at : http://cnx.org/contents/[email protected]:1/Preface.
- Unit 16: Radical Expressions and Quadratic Equations, from Developmental Math: An Open Program. Provided by: Monterey Institute of Technology Located at: https://www.nroc.org/. License: CC BY: Attribution.