Summary: Simplifying Expressions With Exponents
Key Concepts
- Exponential Notation
This is read [latex]a[/latex] to the [latex]{m}^{\mathrm{th}}[/latex] power.
- Product Property of Exponents
- If [latex]a[/latex] is a real number and [latex]m,n[/latex] are counting numbers, then [latex]{a}^{m}\cdot {a}^{n}={a}^{m+n}[/latex]
- To multiply with like bases, add the exponents.
- Power Property for Exponents
- If [latex]a[/latex] is a real number and [latex]m,n[/latex] are counting numbers, then [latex]{\left({a}^{m}\right)}^{n}={a}^{m\cdot n}[/latex]
- Product to a Power Property for Exponents
- If [latex]a[/latex] and [latex]b[/latex] are real numbers and [latex]m[/latex] is a whole number, then [latex]{\left(ab\right)}^{m}={a}^{m}{b}^{m}[/latex]
- Quotient Property of Exponents
- If [latex]a[/latex] is a real number, [latex]a\ne 0[/latex], and [latex]m,n[/latex] are whole numbers, then [latex]{\Large\frac{{a}^{m}}{{a}^{n}}}={a}^{m-n}[/latex].
- The Negative Rule of Exponents
- For any nonzero real number [latex]a[/latex] and natural number [latex]n[/latex], the negative rule of exponents states that [latex]{a}^{-n}=\frac{1}{{a}^{n}}[/latex].
- Exponents of 0 or 1
- Any number or variable raised to a power of [latex]1[/latex] is the number itself. [latex]n^{1}=n[/latex]
- Any non-zero number or variable raised to a power of [latex]0[/latex] is equal to [latex]1[/latex]. [latex]n^{0}=1[/latex]
- The quantity [latex]0^{0}[/latex] is undefined.
Contribute!
Did you have an idea for improving this content? We’d love your input.
Licenses & Attributions
CC licensed content, Specific attribution
- Prealgebra. Provided by: OpenStax License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].