1. (b2−a)(x+6)
2. (x−6)(x−1)
3. a. (2x+3)(x+3)
b. (3x−1)(2x+1)
4. (7x−1)2
5. (9y+10)(9y−10)
6. (6a+b)(36a2−6ab+b2)
7. (10x−1)(100x2+10x+1)
8. (5a−1)−41(17a−2)
Solutions to Odd-Numbered Exercises
1. The terms of a polynomial do not have to have a common factor for the entire polynomial to be factorable. For example, 4x2 and −9y2 don’t have a common factor, but the whole polynomial is still factorable: 4x2−9y2=(2x+3y)(2x−3y).
3. Divide the x term into the sum of two terms, factor each portion of the expression separately, and then factor out the GCF of the entire expression.
5. 7m
7. 10m3
9. y
11. (2a−3)(a+6)
13. (3n−11)(2n+1)
15. (p+1)(2p−7)
17. (5h+3)(2h−3)
19. (9d−1)(d−8)
21. (12t+13)(t−1)
23. (4x+10)(4x−10)
25. (11p+13)(11p−13)
27. (19d+9)(19d−9)
29. (12b+5c)(12b−5c)
31. (7n+12)2
33. (15y+4)2
35. (5p−12)2
37. (x+6)(x2−6x+36)
39. (5a+7)(25a2−35a+49)
41. (4x−5)(16x2+20x+25)
43. (5r+12s)(25r2−60rs+144s2)
45. (2c+3)−41(−7c−15)
47. (x+2)−52(19x+10)
49. (2z−9)−23(27z−99)
51. (14x−3)(7x+9)
53. (3x+5)(3x−5)
55. (2x+5)2(2x−5)2
57. (4z2+49a2)(2z+7a)(2z−7a)
59. (4x+9)(4x−9)(2x+3)1
Licenses & Attributions
CC licensed content, Specific attribution
College Algebra.Provided by: OpenStaxAuthored by: OpenStax College Algebra.Located at: https://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface.License: CC BY: Attribution.