Evaluate a Composition of Functions
Learning Objectives
- Evaluate a composition of functions using a table
- Evaluate a composition of functions using an equation
Evaluating Composite Functions Using Tables
When working with functions given as tables, we read input and output values from the table entries and always work from the inside to the outside. We evaluate the inside function first and then use the output of the inside function as the input to the outside function.Example: Using a Table to Evaluate a Composite Function
Using the table below, evaluate and .1 | 6 | 3 |
2 | 8 | 5 |
3 | 3 | 2 |
4 | 1 | 7 |
Answer: To evaluate , we start from the inside with the input value 3. We then evaluate the inside expression using the table that defines the function . We can then use that result as the input to the function , so is replaced by 2 and we get . Then, using the table that defines the function , we find that .
To evaluate , we first evaluate the inside expression using the first table: . Then, using the table for we can evaluate
The table below shows the composite functions and as tables.
3 | 2 | 8 | 3 | 2 |
Try It
Using the table below, evaluate and .1 | 6 | 3 |
2 | 8 | 5 |
3 | 3 | 2 |
4 | 1 | 7 |
Answer:
Evaluating Composite Functions Using Formulas
When evaluating a composite function where we have either created or been given formulas, the rule of working from the inside out remains the same. The input value to the outer function will be the output of the inner function, which may be a numerical value, a variable name, or a more complicated expression. While we can compose the functions for each individual input value, it is sometimes helpful to find a single formula that will calculate the result of a composition . To do this, we will extend our idea of function evaluation. Recall that, when we evaluate a function like , we substitute the value inside the parentheses into the formula wherever we see the input variable.How To: Given a formula for a composite function, evaluate the function.
- Evaluate the inside function using the input value or variable provided.
- Use the resulting output as the input to the outside function.
Example: Evaluating a Composition of Functions Expressed as Formulas with a Numerical Input
Given and , evaluate .Answer: Because the inside expression is , we start by evaluating at 1.
Then , so we evaluate at an input of 5.
Analysis of the Solution
It makes no difference what the input variables and were called in this problem because we evaluated for specific numerical values.Try It
Given and , evaluate A) B)Answer: A. 8; B. 20
You can check your work with the Desmos calculator. Enter the functions above into Desmos as they are defined. In the next line enter . You should see in the bottom right corner.