Identify Functions Using Graphs
Learning Objectives
- Verify a function using the vertical line test
- Verify a one-to-one function with the horizontal line test
- Identify the graphs of the toolkit functions
How To: Given a graph, use the vertical line test to determine if the graph represents a function.
- Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
- If there is any such line, determine that the graph does not represent a function.
Example: Applying the Vertical Line Test
Which of the graphs represent(s) a function [latex]y=f\left(x\right)?[/latex]Answer: If any vertical line intersects a graph more than once, the relation represented by the graph is not a function. Notice that any vertical line would pass through only one point of the two graphs shown in parts (a) and (b) of the graph above. From this we can conclude that these two graphs represent functions. The third graph does not represent a function because, at most x-values, a vertical line would intersect the graph at more than one point.
Try It
Does the graph below represent a function?Answer: yes
Identifying Basic Toolkit Functions
In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic formulas, and how to solve problems with them. When learning to read, we start with the alphabet. When learning to do arithmetic, we start with numbers. When working with functions, it is similarly helpful to have a base set of building-block elements. We call these our "toolkit functions," which form a set of basic named functions for which we know the graph, formula, and special properties. Some of these functions are programmed to individual buttons on many calculators. For these definitions we will use [latex]x[/latex] as the input variable and [latex]y=f\left(x\right)[/latex] as the output variable. We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations frequently throughout this book. It will be very helpful if we can recognize these toolkit functions and their features quickly by name, formula, graph, and basic table properties. The graphs and sample table values are included with each function shown below.Toolkit Functions | ||
---|---|---|
Name | Function | Graph |
Constant | [latex]f\left(x\right)=c[/latex], where [latex]c[/latex] is a constant | |
Identity | [latex]f\left(x\right)=x[/latex] | |
Absolute value | [latex]f\left(x\right)=|x|[/latex] | |
Quadratic | [latex]f\left(x\right)={x}^{2}[/latex] | |
Cubic | [latex]f\left(x\right)={x}^{3}[/latex] | |
Reciprocal/ Rational | [latex]f\left(x\right)=\frac{1}{x}[/latex] | |
Reciprocal / Rational squared | [latex]f\left(x\right)=\frac{1}{{x}^{2}}[/latex] | |
Square root | [latex]f\left(x\right)=\sqrt{x}[/latex] | |
Cube root | [latex]f\left(x\right)=\sqrt[3]{x}[/latex] |
Try It now
In this exercise, you will graph the toolkit functions using Desmos.- Graph each toolkit function using function notation.
- Make a table of values that references the function and includes at least the interval [-5,5].
Licenses & Attributions
CC licensed content, Original
- Question ID 111715, 11722. Provided by: Lumen Learning License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
- Vertical Line Test. Authored by: Lumen Learning. Located at: https://www.desmos.com/calculator/dcq8twow2q. License: CC BY: Attribution.
CC licensed content, Shared previously
- College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. Located at: https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].
- Question ID 40676. Authored by: Jenck, Michael. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.