Introduction to Graphs of Polynomial Functions
Learning Objectives
By the end of this lesson, you will be able to:- Identify zeros of polynomial functions with even and odd multiplicity
- Use the degree of a polynomial to determine the number of turning points of its graph
- Draw the graph of a polynomial function using end behavior, turning points, intercepts, and the intermediate value theorem
- Write the equation of a polynomial function given it's graph
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
Revenues | 52.4 | 52.8 | 51.2 | 49.5 | 48.6 | 48.6 | 48.7 | 47.1 |
[latex]R\left(t\right)=-0.037{t}^{4}+1.414{t}^{3}-19.777{t}^{2}+118.696t - 205.332[/latex]
where R represents the revenue in millions of dollars and t represents the year, with t = 6 corresponding to 2006. Over which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company decreasing? These questions, along with many others, can be answered by examining the graph of the polynomial function. We have already explored the local behavior of quadratics, a special case of polynomials. In this section we will explore the local behavior of polynomials in general.Licenses & Attributions
CC licensed content, Original
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
CC licensed content, Shared previously
- College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. Located at: https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].