Add, Subtract, and Multiply Complex Numbers
Learning Objectives
- Add and subtract complex numbers
- Multiply complex numbers
A General Note: Addition and Subtraction of Complex Numbers
Adding complex numbers:[latex]\left(a+bi\right)+\left(c+di\right)=\left(a+c\right)+\left(b+d\right)i[/latex]
Subtracting complex numbers:[latex]\left(a+bi\right)-\left(c+di\right)=\left(a-c\right)+\left(b-d\right)i[/latex]
How To: Given two complex numbers, find the sum or difference.
- Identify the real and imaginary parts of each number.
- Add or subtract the real parts.
- Add or subtract the imaginary parts.
Example: Adding Complex Numbers
Add [latex]3 - 4i[/latex] and [latex]2+5i[/latex].Answer: We add the real parts and add the imaginary parts.
[latex]\begin{array}{l}\left(a+bi\right)+\left(c+di\right)=\left(a+c\right)+\left(b+d\right)i\hfill \\ \left(3 - 4i\right)+\left(2+5i\right)=\left(3+2\right)+\left(-4+5\right)i\hfill \\ \text{ }=5+i\hfill \end{array}[/latex]
Try It
Subtract [latex]2+5i[/latex] from [latex]3 - 4i[/latex].Answer: [latex]\left(3 - 4i\right)-\left(2+5i\right)=1 - 9i[/latex]
Multiplying Complex Numbers Together
Now, let’s multiply two complex numbers. We can use either the distributive property or the FOIL method. Recall that FOIL is an acronym for multiplying First, Outer, Inner, and Last terms together. Using either the distributive property or the FOIL method, we get[latex]\left(a+bi\right)\left(c+di\right)=ac+adi+bci+bd{i}^{2}[/latex]
Because [latex]{i}^{2}=-1[/latex], we have[latex]\left(a+bi\right)\left(c+di\right)=ac+adi+bci-bd[/latex]
To simplify, we combine the real parts, and we combine the imaginary parts.[latex]\left(a+bi\right)\left(c+di\right)=\left(ac-bd\right)+\left(ad+bc\right)i[/latex]
How To: Given two complex numbers, multiply to find the product.
- Use the distributive property or the FOIL method.
- Simplify.
Example: Multiplying a Complex Number by a Complex Number
Multiply [latex]\left(4+3i\right)\left(2 - 5i\right)[/latex].Answer:
Use [latex]\left(a+bi\right)\left(c+di\right)=\left(ac-bd\right)+\left(ad+bc\right)i[/latex]
[latex]\begin{array}{c}\left(4+3i\right)\left(2 - 5i\right)=\left(4\cdot 2 - 3\cdot \left(-5\right)\right)+\left(4\cdot \left(-5\right)+3\cdot 2\right)i\hfill \\ =\left(8+15\right)+\left(-20+6\right)i\hfill \\ =23 - 14i\hfill \end{array}[/latex]
Try It
Multiply [latex]\left(3 - 4i\right)\left(2+3i\right)[/latex].Answer: [latex]18+i[/latex]
Licenses & Attributions
CC licensed content, Original
- Question ID 120193. Provided by: LumenLearning License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
CC licensed content, Shared previously
- Ex 1: Adding and Subtracting Complex Numbers. Authored by: James Sousa (Mathispower4u.com) . License: CC BY: Attribution.
- Question ID 61710. Authored by: Day, Alyson. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 40462. Authored by: Jenck,Michael. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 3903. Authored by: Lippman,David. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 61715. Authored by: Day, Alyson. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Ex 2: Multiply Complex Numbers. Authored by: Sousa, James (Mathispower4u). License: CC BY: Attribution.
- College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. Located at: https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].
- Ex: Dividing Complex Numbers . Authored by: James Sousa (Mathispower4u.com) . License: CC BY: Attribution.