Multiplying Whole Numbers
Learning Outcomes
- Identify and use the multiplication property of zero
- Identify and use the identity property of multiplication
- Identify and use the commutative property of multiplication
- Multiply multiple-digit whole numbers using columns that represent place value
Multiply Whole Numbers
In order to multiply without using models, you need to know all the one digit multiplication facts. Make sure you know them fluently before proceeding in this section. The table below shows the multiplication facts. Each box shows the product of the number down the left column and the number across the top row. If you are unsure about a product, model it. It is important that you memorize any number facts you do not already know so you will be ready to multiply larger numbers.[latex]×[/latex] | [latex]0[/latex] | [latex]1[/latex] | [latex]2[/latex] | [latex]3[/latex] | [latex]4[/latex] | [latex]5[/latex] | [latex]6[/latex] | [latex]7[/latex] | [latex]8[/latex] | [latex]9[/latex] |
---|---|---|---|---|---|---|---|---|---|---|
[latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] |
[latex]1[/latex] | [latex]0[/latex] | [latex]1[/latex] | [latex]2[/latex] | [latex]3[/latex] | [latex]4[/latex] | [latex]5[/latex] | [latex]6[/latex] | [latex]7[/latex] | [latex]8[/latex] | [latex]9[/latex] |
[latex]2[/latex] | [latex]0[/latex] | [latex]2[/latex] | [latex]4[/latex] | [latex]6[/latex] | [latex]8[/latex] | [latex]10[/latex] | [latex]12[/latex] | [latex]14[/latex] | [latex]16[/latex] | [latex]18[/latex] |
[latex]3[/latex] | [latex]0[/latex] | [latex]3[/latex] | [latex]6[/latex] | [latex]9[/latex] | [latex]12[/latex] | [latex]15[/latex] | [latex]18[/latex] | [latex]21[/latex] | [latex]24[/latex] | [latex]27[/latex] |
[latex]4[/latex] | [latex]0[/latex] | [latex]4[/latex] | [latex]8[/latex] | [latex]12[/latex] | [latex]16[/latex] | [latex]20[/latex] | [latex]24[/latex] | [latex]28[/latex] | [latex]32[/latex] | [latex]36[/latex] |
[latex]5[/latex] | [latex]0[/latex] | [latex]5[/latex] | [latex]10[/latex] | [latex]15[/latex] | [latex]20[/latex] | [latex]25[/latex] | [latex]30[/latex] | [latex]35[/latex] | [latex]40[/latex] | [latex]45[/latex] |
[latex]6[/latex] | [latex]0[/latex] | [latex]6[/latex] | [latex]12[/latex] | [latex]18[/latex] | [latex]24[/latex] | [latex]30[/latex] | [latex]36[/latex] | [latex]42[/latex] | [latex]48[/latex] | [latex]54[/latex] |
[latex]7[/latex] | [latex]0[/latex] | [latex]7[/latex] | [latex]14[/latex] | [latex]21[/latex] | [latex]28[/latex] | [latex]35[/latex] | [latex]42[/latex] | [latex]49[/latex] | [latex]56[/latex] | [latex]63[/latex] |
[latex]8[/latex] | [latex]0[/latex] | [latex]8[/latex] | [latex]16[/latex] | [latex]24[/latex] | [latex]32[/latex] | [latex]40[/latex] | [latex]48[/latex] | [latex]56[/latex] | [latex]64[/latex] | [latex]72[/latex] |
[latex]9[/latex] | [latex]0[/latex] | [latex]9[/latex] | [latex]18[/latex] | [latex]27[/latex] | [latex]36[/latex] | [latex]45[/latex] | [latex]54[/latex] | [latex]63[/latex] | [latex]72[/latex] | [latex]81[/latex] |
Multiplication Property of Zero
The product of any number and [latex]0[/latex] is [latex]0[/latex].[latex]\begin{array}{}\\ a\cdot 0=0\hfill \\ 0\cdot a=0\end{array}[/latex]
example
Multiply:- [latex]0\cdot 11[/latex]
- [latex]\left(42\right)0[/latex]
1. | [latex]0\cdot 11[/latex] |
The product of any number and zero is zero. | [latex]0[/latex] |
2. | [latex]\left(42\right)0[/latex] |
Multiplying by zero results in zero. | [latex]0[/latex] |
Identity Property of Multiplication
The product of any number and [latex]1[/latex] is the number.[latex]\begin{array}{c}1\cdot a=a\\ a\cdot 1=a\end{array}[/latex]
example
Multiply:- [latex]\left(11\right)1[/latex]
- [latex]1\cdot 42[/latex]
Answer: Solution:
1. | [latex]\left(11\right)1[/latex] |
The product of any number and one is the number. | [latex]11[/latex] |
2. | [latex]1\cdot 42[/latex] |
Multiplying by one does not change the value. | [latex]42[/latex] |
[latex]4\cdot 7=28\quad 7\cdot 4=28[/latex] [latex-display]9\cdot 7=63\quad 7\cdot 9=63[/latex-display] [latex]8\cdot 9=72\quad 9\cdot 8=72[/latex]
When the order of the factors is reversed, the product does not change. This is called the Commutative Property of Multiplication.Commutative Property of Multiplication
Changing the order of the factors does not change their product.[latex]a\cdot b=b\cdot a[/latex]
example
Multiply: [latex-display]8\cdot 7[/latex-display] [latex-display]7\cdot 8[/latex-display]Answer: Solution:
1. | [latex]8\cdot 7[/latex] |
Multiply. | [latex]56[/latex] |
2. | [latex]7\cdot 8[/latex] |
Multiply. | [latex]56[/latex] |
[latex]\begin{array}{c}\hfill 27\\ \hfill \underset{\text{___}}{\times 3}\end{array}[/latex]
We start by multiplying [latex]3[/latex] by [latex]7[/latex].[latex]3\times 7=21[/latex]
We write the [latex]1[/latex] in the ones place of the product. We carry the [latex]2[/latex] tens by writing [latex]2[/latex] above the tens place. Then we multiply the [latex]3[/latex] by the [latex]2[/latex], and add the [latex]2[/latex] above the tens place to the product. So [latex]3\times 2=6[/latex], and [latex]6+2=8[/latex]. Write the [latex]8[/latex] in the tens place of the product.The product is [latex]81[/latex].
When we multiply two numbers with a different number of digits, it’s usually easier to write the smaller number on the bottom. You could write it the other way, too, but this way is easier to work with.example
Multiply: [latex]15\cdot 4[/latex]Answer: Solution
Write the numbers so the digits [latex]5[/latex] and [latex]4[/latex] line up vertically. | [latex]\begin{array}{c}\hfill 15\\ \hfill \underset{\text{_____}}{\times 4}\end{array}[/latex] |
Multiply [latex]4[/latex] by the digit in the ones place of [latex]15[/latex]. [latex]4\cdot 5=20[/latex]. | |
Write [latex]0[/latex] in the ones place of the product and carry the [latex]2[/latex] tens. | [latex]\begin{array}{c}\hfill \stackrel{2}{1}5\\ \hfill \underset{\text{_____}}{\times 4}\\ \hfill 0\end{array}[/latex] |
Multiply [latex]4[/latex] by the digit in the tens place of [latex]15[/latex]. [latex]4\cdot 1=4[/latex] . Add the [latex]2[/latex] tens we carried. [latex]4+2=6[/latex] . | |
Write the [latex]6[/latex] in the tens place of the product. | [latex]\begin{array}{c}\hfill \stackrel{2}{1}5\\ \hfill \underset{\text{_____}}{\times 4}\\ \hfill 60\end{array}[/latex] |
example
Multiply: [latex]286\cdot 5[/latex]Answer: Solution
Write the numbers so the digits [latex]5[/latex] and [latex]6[/latex] line up vertically. | [latex]\begin{array}{c}\hfill 286\\ \hfill \underset{\text{_____}}{\times 5}\end{array}[/latex] |
Multiply [latex]5[/latex] by the digit in the ones place of [latex]286[/latex]. [latex]5\cdot 6=30[/latex]. | |
Write the [latex]0[/latex] in the ones place of the product and carry the [latex]3[/latex] to the tens place.Multiply [latex]5[/latex] by the digit in the tens place of [latex]286[/latex]. [latex]5\cdot 8=40[/latex] . | [latex]\begin{array}{}\\ \hfill 2\stackrel{3}{8}6\\ \hfill \underset{\text{_____}}{\times 5}\\ \hfill 0\end{array}[/latex] |
Add the [latex]3[/latex] tens we carried to get [latex]40+3=43[/latex] . Write the [latex]3[/latex] in the tens place of the product and carry the [latex]4[/latex] to the hundreds place. | [latex]\begin{array}{c}\hfill \stackrel{4}{2}\stackrel{3}{8}6\\ \hfill \underset{\text{_____}}{\times 5}\\ \hfill 30\end{array}[/latex] |
Multiply [latex]5[/latex] by the digit in the hundreds place of [latex]286[/latex]. [latex]5\cdot 2=10[/latex]. Add the [latex]4[/latex] hundreds we carried to get [latex]10+4=14[/latex]. Write the [latex]4[/latex] in the hundreds place of the product and the [latex]1[/latex] to the thousands place. | [latex]\begin{array}{c}\hfill \stackrel{4}{2}\stackrel{3}{8}6\\ \hfill \underset{\text{_____}}{\times 5}\\ \hfill 1,430\end{array}[/latex] |
Multiply two whole numbers to find the product
- Write the numbers so each place value lines up vertically.
- Multiply the digits in each place value.
- Work from right to left, starting with the ones place in the bottom number.
- Multiply the bottom number by the ones digit in the top number, then by the tens digit, and so on.
- If a product in a place value is more than [latex]9[/latex], carry to the next place value.
- Write the partial products, lining up the digits in the place values with the numbers above.
- Repeat for the tens place in the bottom number, the hundreds place, and so on.
- Insert a zero as a placeholder with each additional partial product.
- Work from right to left, starting with the ones place in the bottom number.
- Add the partial products.
example
Multiply: [latex]62\left(87\right)[/latex].Answer: Solution
Write the numbers so each place lines up vertically. | |
Start by multiplying 7 by 62. Multiply 7 by the digit in the ones place of 62. [latex]7\cdot 2=14[/latex]. Write the 4 in the ones place of the product and carry the 1 to the tens place. | |
Multiply 7 by the digit in the tens place of 62. [latex]7\cdot 6=42[/latex]. Add the 1 ten we carried. [latex]42+1=43[/latex] . Write the 3 in the tens place of the product and the 4 in the hundreds place. | |
The first partial product is[latex]434[/latex]. | |
Now, write a[latex]0[/latex] under the[latex]4[/latex] in the ones place of the next partial product as a placeholder since we now multiply the digit in the tens place of[latex]87[/latex] by[latex]62[/latex]. Multiply[latex]8[/latex] by the digit in the ones place of[latex]62[/latex]. [latex]8\cdot 2=16[/latex]. Write the[latex]6[/latex] in the next place of the product, which is the tens place. Carry the[latex]1[/latex] to the tens place. | |
Multiply[latex]8[/latex] by[latex]6[/latex], the digit in the tens place of[latex]62[/latex], then add the[latex]1[/latex] ten we carried to get[latex]49[/latex]. Write the[latex]9[/latex] in the hundreds place of the product and the[latex]4[/latex] in the thousands place. | |
The second partial product is[latex]4960[/latex]. Add the partial products. |
example
Multiply:- [latex]47\cdot 10[/latex]
- [latex]47\cdot 100[/latex]
Answer: Solution
1. [latex]47\cdot 10[/latex] | [latex]\begin{array}{c}\hfill 47\\ \hfill \underset{\text{___}}{\times 10}\\ \hfill 00\\ \hfill \underset{\text{___}}{470}\\ \hfill 470\end{array}[/latex] |
2. [latex]47\cdot 100[/latex] | [latex]\begin{array}{c}\hfill 47\\ \hfill \underset{\text{_____}}{\times 100}\\ \hfill 00\\ \hfill \underset{\text{_____}}{\begin{array}{c}\hfill 000\\ \hfill 4700\end{array}}\\ \hfill 4,700\end{array}[/latex] |
try it
Multiply:example
Multiply: [latex]\left(354\right)\left(438\right)[/latex]Answer: Solution There are three digits in the factors so there will be [latex]3[/latex] partial products. We do not have to write the [latex]0[/latex] as a placeholder as long as we write each partial product in the correct place.
example
Multiply: [latex]\left(896\right)201[/latex]Answer: Solution There should be [latex]3[/latex] partial products. The second partial product will be the result of multiplying [latex]896[/latex] by [latex]0[/latex]. Notice that the second partial product of all zeros doesn’t really affect the result. We can place a zero as a placeholder in the tens place and then proceed directly to multiplying by the [latex]2[/latex] in the hundreds place, as shown. Multiply by [latex]10[/latex], but insert only one zero as a placeholder in the tens place. Multiply by [latex]200[/latex], putting the [latex]2[/latex] from the [latex]12[/latex]. [latex]2\cdot 6=12[/latex] in the hundreds place. [latex-display]\begin{array}{}\\ \\ \hfill 896\\ \hfill \underset{\text{_____}}{\times 201}\\ \hfill 896\\ \hfill \underset{\text{__________}}{17920}\\ \hfill 180,096\end{array}[/latex-display]
to multiply | [latex]8\cdot 3\cdot 2[/latex] |
first multiply [latex]8\cdot 3[/latex] | [latex]24\cdot 2[/latex] |
then multiply [latex]24\cdot 2[/latex] | [latex]48[/latex] |
Licenses & Attributions
CC licensed content, Shared previously
- Multiplying Whole Numbers. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
- Question ID: 144419, 144421, 144424, 144427, 144429, 144432, 144433, 144434, 144434. Authored by: Alyson Day. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
CC licensed content, Specific attribution
- Prealgebra. Provided by: OpenStax License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].