example
[latex]\text{Simplify: }7\left(-2\right)+4\left(-7\right)-6[/latex].
Solution:
We use the order of operations. Multiply first and then add and subtract from left to right.
|
[latex]7\left(-2\right)+4\left(-7\right)-6[/latex] |
Multiply first. |
[latex]-14+\left(-28\right)-6[/latex] |
Add. |
[latex]-42 - 6[/latex] |
Subtract. |
[latex]-48[/latex] |
example
[latex]\text{Simplify: }12 - 3\left(9 - 12\right)[/latex].
Answer:
Solution:
According to the order of operations, we simplify inside parentheses first. Then we will multiply and finally we will subtract.
|
[latex]12 - 3\left(9 - 12\right)[/latex] |
Subtract the parentheses first. |
[latex]12 - 3\left(-3\right)[/latex] |
Multiply. |
[latex]12-\left(-9\right)[/latex] |
Subtract. |
[latex]\text{21}[/latex] |
example
[latex]\text{Simplify:}-30\div 2+\left(-3\right)\left(-7\right)[/latex].
Answer:
Solution:
First we will multiply and divide from left to right. Then we will add.
|
[latex]-30\div 2+\left(-3\right)\left(-7\right)[/latex] |
Divide. |
[latex]-15+\left(-3\right)\left(-7\right)[/latex] |
Multiply. |
[latex]-15+21[/latex] |
Add. |
[latex]\text{6}[/latex] |
example
[latex]\text{Evaluate }3x+4y - 6\text{ when }x=-1\text{ and }y=2[/latex].
Answer:
Solution:
|
[latex]3x+4y--6[/latex] |
Substitute [latex]x=-1[/latex] and [latex]y=2[/latex] . |
[latex]3(\color{red}{--1})+4(\color{blue}{2})--6[/latex] |
Multiply. |
[latex]--3+8--6[/latex] |
Simplify. |
[latex]--1[/latex] |