We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Prealgebra

Simplifying Expressions With Negative Exponents

Learning Outcomes

  • Use the properties of exponents to simplify products and quotients that contain negative exponents and variables
  All the exponent properties we developed earlier in this chapter with whole number exponents apply to integer exponents, too. We restate them here for reference.

Summary of Exponent Properties

If [latex]a,b[/latex] are real numbers and [latex]m,n[/latex] are integers, then [latex-display]\begin{array}{cccc}\mathbf{\text{Product Property}}\hfill & & & {a}^{m}\cdot {a}^{n}={a}^{m+n}\hfill \\ \mathbf{\text{Power Property}}\hfill & & & {\left({a}^{m}\right)}^{n}={a}^{m\cdot n}\hfill \\ \mathbf{\text{Product to a Power Property}}\hfill & & & {\left(ab\right)}^{m}={a}^{m}{b}^{m}\hfill \\ \mathbf{\text{Quotient Property}}\hfill & & & \frac{{a}^{m}}{{a}^{n}}={a}^{m-n},a\ne 0\hfill \\ \mathbf{\text{Zero Exponent Property}}\hfill & & & {a}^{0}=1,a\ne 0\hfill \\ \mathbf{\text{Quotient to a Power Property}}\hfill & & & {\left(\frac{a}{b}\right)}^{m}=\frac{{a}^{m}}{{b}^{m}},b\ne 0\hfill \\ \mathbf{\text{Definition of Negative Exponent}}\hfill & & & {a}^{-n}=\frac{1}{{a}^{n}}\hfill \end{array}[/latex-display]
 

example

Simplify: 1. [latex]{x}^{-4}\cdot {x}^{6}[/latex] 2. [latex]{y}^{-6}\cdot {y}^{4}[/latex] 3. [latex]{z}^{-5}\cdot {z}^{-3}[/latex] Solution
1.
[latex]{x}^{-4}\cdot {x}^{6}[/latex]
Use the Product Property, [latex]{a}^{m}\cdot {a}^{n}={a}^{m+n}[/latex]. [latex]{x}^{-4+6}[/latex]
Simplify. [latex]{x}^{2}[/latex]
2.
[latex]{y}^{-6}\cdot {y}^{4}[/latex]
The bases are the same, so add the exponents. [latex]{y}^{-6+4}[/latex]
Simplify. [latex]{y}^{-2}[/latex]
Use the definition of a negative exponent, [latex]{a}^{-n}=\frac{1}{{a}^{n}}[/latex]. [latex]\frac{1}{{y}^{2}}[/latex]
3.
[latex]{z}^{-5}\cdot {z}^{-3}[/latex]
The bases are the same, so add the exponents. [latex]{z}^{-5 - 3}[/latex]
Simplify. [latex]{z}^{-8}[/latex]
Use the definition of a negative exponent, [latex]{a}^{-n}=\frac{1}{{a}^{n}}[/latex]. [latex]\frac{1}{{z}^{8}}[/latex]
 

try it

[ohm_question]146301[/ohm_question]
    In the next two examples, we’ll start by using the Commutative Property to group the same variables together. This makes it easier to identify the like bases before using the Product Property of Exponents.  

example

Simplify: [latex]\left({m}^{4}{n}^{-3}\right)\left({m}^{-5}{n}^{-2}\right)[/latex].

Answer: Solution

[latex]\left({m}^{4}{n}^{-3}\right)\left({m}^{-5}{n}^{-2}\right)[/latex]
Use the Commutative Property to get like bases together. [latex]{m}^{4}{m}^{-5}\cdot {n}^{-2}{n}^{-3}[/latex]
Add the exponents for each base. [latex]{m}^{-1}\cdot {n}^{-5}[/latex]
Take reciprocals and change the signs of the exponents. [latex]\frac{1}{{m}^{1}}\cdot \frac{1}{{n}^{5}}[/latex]
Simplify. [latex]\frac{1}{m{n}^{5}}[/latex]

 

try it

[ohm_question]146303[/ohm_question]
  If the monomials have numerical coefficients, we multiply the coefficients, just as we did in Integer Exponents and Scientific Notation.  

example

Simplify: [latex]\left(2{x}^{-6}{y}^{8}\right)\left(-5{x}^{5}{y}^{-3}\right)[/latex].

Answer: Solution

[latex]\left(2{x}^{-6}{y}^{8}\right)\left(-5{x}^{5}{y}^{-3}\right)[/latex]
Rewrite with the like bases together. [latex]2\left(-5\right)\cdot \left({x}^{-6}{x}^{5}\right)\cdot \left({y}^{8}{y}^{-3}\right)[/latex]
Simplify. [latex]-10\cdot {x}^{-1}\cdot {y}^{5}[/latex]
Use the definition of a negative exponent, [latex]{a}^{-n}=\frac{1}{{a}^{n}}[/latex]. [latex]-10\cdot \frac{1}{{x}^{1}}\cdot {y}^{5}[/latex]
Simplify. [latex]\frac{-10{y}^{5}}{x}[/latex]

 

try it

[ohm_question]146304[/ohm_question]
  In the next two examples, we’ll use the Power Property and the Product to a Power Property.  

example

Simplify: [latex]{\left({k}^{3}\right)}^{-2}[/latex].

Answer: Solution

[latex]{\left({k}^{3}\right)}^{-2}[/latex]
Use the Product to a Power Property, [latex]{\left(ab\right)}^{m}={a}^{m}{b}^{m}[/latex]. [latex]{k}^{3\left(-2\right)}[/latex]
Simplify. [latex]{k}^{-6}[/latex]
Rewrite with a positive exponent. [latex]\frac{1}{{k}^{6}}[/latex]

 

try it

[ohm_question]146306[/ohm_question]
   

example

Simplify: [latex]{\left(5{x}^{-3}\right)}^{2}[/latex].

Answer: Solution

[latex]{\left(5{x}^{-3}\right)}^{2}[/latex]
Use the Product to a Power Property, [latex]{\left(ab\right)}^{m}={a}^{m}{b}^{m}[/latex]. [latex]{5}^{2}{\left({x}^{-3}\right)}^{2}[/latex]
Simplify [latex]{5}^{2}[/latex] and multiply the exponents of [latex]x[/latex] using the Power Property, [latex]{\left({a}^{m}\right)}^{n}={a}^{m\cdot n}[/latex]. [latex]25{k}^{-6}[/latex]
Rewrite [latex]{x}^{-6}[/latex] by using the definition of a negative exponent, [latex]{a}^{-n}=\frac{1}{{a}^{n}}[/latex]. [latex]25\cdot \frac{1}{{x}^{6}}[/latex]
Simplify [latex]\frac{25}{{x}^{6}}[/latex]

 

try it

[ohm_question]146307[/ohm_question]
In the following video we show another example of how to simplify a product that contains negative exponents. https://youtu.be/J9A-JlTXnsQ To simplify a fraction, we use the Quotient Property.  

example

Simplify: [latex]\frac{{r}^{5}}{{r}^{-4}}[/latex].

Answer: Solution

[latex]\frac{r^5}{r^{-4}}[/latex]
Use the Quotient Property, [latex]\frac{{a}^{m}}{{a}^{n}}={a}^{m-n}[/latex] . [latex]{r}^{5-(\color{red}{-4})}[/latex]
Be careful to subtract [latex]5-(\color{red}{-4})[/latex]
Simplify. [latex]4^9[/latex]

 

try it

[ohm_question]146308[/ohm_question]
In the next video we share more examples of simplifying a quotient with negative exponents. https://youtu.be/J5MrZbpaAGc

Licenses & Attributions

CC licensed content, Original

  • Question ID 146301, 146303, 146304, 146306, 146307, 146308. Authored by: Lumen Learning. License: CC BY: Attribution.

CC licensed content, Shared previously

  • Simplify A Product of Expressions with Neg Exponents (2 Methods). Authored by: James Sousa (mathispower4u.com). License: CC BY: Attribution.
  • Ex 2: Simplify Exponential Expressions With Negative Exponents - Basic. Authored by: James Sousa (mathispower4u.com). License: CC BY: Attribution.

CC licensed content, Specific attribution