Summary: Adding and Subtracting Fractions With Different Denominators
These Key Concepts will get broken up between two tiles - Adding and Subtracting Fractions with Different Denominators, and Simplifying and Evaluating Expressions That Contain FractionsKey Concepts
- Find the least common denominator (LCD) of two fractions.
- Factor each denominator into its primes.
- List the primes, matching primes in columns when possible.
- Bring down the columns.
- Multiply the factors. The product is the LCM of the denominators.
- The LCM of the denominators is the LCD of the fractions.
- Equivalent Fractions Property
- If [latex]a,b[/latex] , and [latex]c[/latex] are whole numbers where [latex]b\ne 0[/latex] , [latex]c\ne 0[/latex] then[latex]\frac{a}{b}=\frac{a\cdot c}{b\cdot c}[/latex] and [latex]\frac{a\cdot c}{b\cdot c}=\frac{a}{b}[/latex]
- Convert two fractions to equivalent fractions with their LCD as the common denominator.
- Find the LCD.
- For each fraction, determine the number needed to multiply the denominator to get the LCD.
- Use the Equivalent Fractions Property to multiply the numerator and denominator by the number from Step 2.
- Simplify the numerator and denominator.
- Add or subtract fractions with different denominators.
- Find the LCD.
- Convert each fraction to an equivalent form with the LCD as the denominator.
- Add or subtract the fractions.
- Write the result in simplified form.
Glossary
- least common denominator (LCD)
- The least common denominator (LCD) of two fractions is the least common multiple (LCM) of their denominators.
Licenses & Attributions
CC licensed content, Specific attribution
- Prealgebra. Provided by: OpenStax License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].