We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Prealgebra

Simplifying Expressions Using the Properties of Identities, Inverses, and Zero

Learning Outcomes

  • Simplify algebraic expressions using identity, inverse and zero properties
  • Identify which property(ies) to use to simplify an algebraic expression

Simplify Expressions using the Properties of Identities, Inverses, and Zero

We will now practice using the properties of identities, inverses, and zero to simplify expressions.

example

Simplify: [latex]3x+15 - 3x[/latex]. Solution:
[latex]3x+15 - 3x[/latex]
Notice the additive inverses, [latex]3x[/latex] and [latex]-3x[/latex] . [latex]0+15[/latex]
Add. [latex]15[/latex]

try it

[ohm_question]146488[/ohm_question]

example

Simplify: [latex]4\left(0.25q\right)[/latex].

Answer: Solution:

[latex]4\left(0.25q\right)[/latex]
Regroup, using the associative property. [latex]\left[4\left(0.25\right)\right]q[/latex]
Multiply. [latex]1.00q[/latex]
Simplify; 1 is the multiplicative identity. [latex]q[/latex]

try it

[ohm_question]146489[/ohm_question]

example

Simplify: [latex]\frac{0}{n+5}[/latex] , where [latex]n\ne -5[/latex].

Answer: Solution:

[latex]\frac{0}{n+5}[/latex]
Zero divided by any real number except itself is zero. [latex]0[/latex]

try it

[ohm_question]146490[/ohm_question]

example

Simplify: [latex]\frac{10 - 3p}{0}[/latex].

Answer: Solution:

[latex]\frac{10 - 3p}{0}[/latex]
Division by zero is undefined. undefined

try it

[ohm_question]146491[/ohm_question]

example

Simplify: [latex]\frac{3}{4}\cdot \frac{4}{3}\left(6x+12\right)[/latex].

Answer: Solution: We cannot combine the terms in parentheses, so we multiply the two fractions first.

[latex]\frac{3}{4}\cdot \frac{4}{3}\left(6x+12\right)[/latex]
Multiply; the product of reciprocals is 1. [latex]1\left(6x+12\right)[/latex]
Simplify by recognizing the multiplicative identity. [latex]6x+12[/latex]

try it

[ohm_question]146493[/ohm_question]
All the properties of real numbers we have used in this chapter are summarized in the table below.
Properties of Real Numbers
Property Of Addition Of Multiplication
Commutative Property
If a and b are real numbers then… [latex]a+b=b+a[/latex] [latex]a\cdot b=b\cdot a[/latex]
Associative Property
If a, b, and c are real numbers then… [latex]\left(a+b\right)+c=a+\left(b+c\right)[/latex] [latex]\left(a\cdot b\right)\cdot c=a\cdot \left(b\cdot c\right)[/latex]
Identity Property [latex]0[/latex] is the additive identity [latex]1[/latex] is the multiplicative identity
For any real number a, [latex]\begin{array}{l}a+0=a\\ 0+a=a\end{array}[/latex] [latex]\begin{array}{l}a\cdot 1=a\\ 1\cdot a=a\end{array}[/latex]
Inverse Property [latex]-\mathit{\text{a}}[/latex] is the additive inverse of [latex]a[/latex] [latex]a,a\ne 0[/latex] [latex]\frac{1}{a}[/latex] is the multiplicative inverse of [latex]a[/latex]
For any real number a, [latex]a+\text{(}\text{-}\mathit{\text{a}}\text{)}=0[/latex] [latex]a\cdot 1a=1[/latex]
Distributive Property If [latex]a,b,c[/latex] are real numbers, then [latex]a\left(b+c\right)=ab+ac[/latex]
Properties of Zero
For any real number a, [latex]\begin{array}{l}a\cdot 0=0\\ 0\cdot a=0\end{array}[/latex]
For any real number [latex]a,a\ne 0[/latex] [latex]\frac{0}{a}=0[/latex] [latex]\frac{a}{0}[/latex] is undefined

Licenses & Attributions

CC licensed content, Original

  • Question ID 146493, 146491, 146490, 146487. Authored by: Lumen Learning. License: CC BY: Attribution.

CC licensed content, Specific attribution