We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Precalculus I

Solutions 23: Logarithmic Functions

Solutions to Try Its

1. a. [latex]{\mathrm{log}}_{10}\left(1,000,000\right)=6[/latex] is equivalent to [latex]{10}^{6}=1,000,000[/latex] b. [latex]{\mathrm{log}}_{5}\left(25\right)=2[/latex] is equivalent to [latex]{5}^{2}=25[/latex] 2. a. [latex]{3}^{2}=9[/latex] is equivalent to [latex]{\mathrm{log}}_{3}\left(9\right)=2[/latex] b. [latex]{5}^{3}=125[/latex] is equivalent to [latex]{\mathrm{log}}_{5}\left(125\right)=3[/latex] c. [latex]{2}^{-1}=\frac{1}{2}[/latex] is equivalent to [latex]{\text{log}}_{2}\left(\frac{1}{2}\right)=-1[/latex] 3. [latex]{\mathrm{log}}_{121}\left(11\right)=\frac{1}{2}[/latex] (recalling that [latex]\sqrt{121}={\left(121\right)}^{\frac{1}{2}}=11[/latex] ) 4. [latex]{\mathrm{log}}_{2}\left(\frac{1}{32}\right)=-5[/latex] 5. It is not possible to take the logarithm of a negative number in the set of real numbers. 6. It is not possible to take the logarithm of a negative number in the set of real numbers.

Solutions to Odd-Numbered Exercises

1. A logarithm is an exponent. Specifically, it is the exponent to which a base b is raised to produce a given value. In the expressions given, the base b has the same value. The exponent, y, in the expression [latex]{b}^{y}[/latex] can also be written as the logarithm, [latex]{\mathrm{log}}_{b}x[/latex], and the value of x is the result of raising b to the power of y. 3. Since the equation of a logarithm is equivalent to an exponential equation, the logarithm can be converted to the exponential equation [latex]{b}^{y}=x[/latex]\\, and then properties of exponents can be applied to solve for x. 5. The natural logarithm is a special case of the logarithm with base b in that the natural log always has base e. Rather than notating the natural logarithm as [latex]{\mathrm{log}}_{e}\left(x\right)[/latex], the notation used is [latex]\mathrm{ln}\left(x\right)[/latex]. 7. [latex]{a}^{c}=b[/latex] 9. [latex]{x}^{y}=64[/latex] 11. [latex]{15}^{b}=a[/latex] 13. [latex]{13}^{a}=142[/latex] 15. [latex]{e}^{n}=w[/latex] 17. [latex]{\text{log}}_{c}\left(k\right)=d[/latex] 19. [latex]{\mathrm{log}}_{19}y=x[/latex] 21. [latex]{\mathrm{log}}_{n}\left(103\right)=4[/latex] 23. [latex]{\mathrm{log}}_{y}\left(\frac{39}{100}\right)=x[/latex] 25. [latex]\text{ln}\left(h\right)=k[/latex] 27. [latex]x={2}^{-3}=\frac{1}{8}[/latex] 29. [latex]x={3}^{3}=27[/latex] 31. [latex]x={9}^{\frac{1}{2}}=3[/latex] 33. [latex]x={6}^{-3}=\frac{1}{216}[/latex] 35. [latex]x={e}^{2}[/latex] 37. 32 39. 1.06 41. 14.125 43. [latex]\frac{1}{2}[/latex] 45. 4 47. –3 49. –12 51. 0 53. 10 55. 2.708 57. 0.151 59. No, the function has no defined value for = 0. To verify, suppose = 0 is in the domain of the function [latex]f\left(x\right)=\mathrm{log}\left(x\right)[/latex]. Then there is some number n such that [latex]n=\mathrm{log}\left(0\right)[/latex]. Rewriting as an exponential equation gives: [latex]{10}^{n}=0[/latex], which is impossible since no such real number n exists. Therefore, = 0 is not the domain of the function [latex]f\left(x\right)=\mathrm{log}\left(x\right)[/latex]. 61. Yes. Suppose there exists a real number x such that [latex]\mathrm{ln}x=2[/latex]. Rewriting as an exponential equation gives [latex]x={e}^{2}[/latex], which is a real number. To verify, let [latex]x={e}^{2}[/latex]. Then, by definition, [latex]\mathrm{ln}\left(x\right)=\mathrm{ln}\left({e}^{2}\right)=2[/latex]. 63. No; [latex]\mathrm{ln}\left(1\right)=0[/latex], so [latex]\frac{\mathrm{ln}\left({e}^{1.725}\right)}{\mathrm{ln}\left(1\right)}[/latex] is undefined. 65. 2

Licenses & Attributions

CC licensed content, Shared previously

  • Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..