We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Precalculus II

Angles

Learning Outcomes

  • Draw angles in standard position.
  • Convert between degrees and radians.
  • Find coterminal angles.
  • Find the length of a circular arc.
  • Use linear and angular speed to describe motion on a circular path.
A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow runway. A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and so do all of us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we estimate them or judge them by eye. Either way, the proper angle can make the difference between success and failure in many undertakings. In this section, we will examine properties of angles.

Draw angles in standard position

Properly defining an angle first requires that we define a ray. A ray consists of one point on a line and all points extending in one direction from that point. The first point is called the endpoint of the ray. We can refer to a specific ray by stating its endpoint and any other point on it. The ray in Figure 1 can be named as ray EF, or in symbol form EF"> EF.
Illustration of Ray EF, with point F and endpoint E.

Figure 1

An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle, and the two rays are the sides of the angle. The angle in Figure 2 is formed from ED"> ED and EF"> EF. Angles can be named using a point on each ray and the vertex, such as angle DEF, or in symbol form \hspace{0.17em}\angle DEF"> \hspace{0.17em}\angle DEF.
Illustration of Angle DEF, with vertex E and points D and F.

Figure 2

Greek letters are often used as variables for the measure of an angle. The table below is a list of Greek letters commonly used to represent angles, and a sample angle is shown in Figure 2.
  \displaystyle \theta   \displaystyle \phi \text{or}\varphi   \displaystyle \alpha   \displaystyle \beta   \displaystyle \gamma
theta phi alpha beta gamma
Illustration of angle theta.
Figure 3. Angle theta, shown as \displaystyle \angle \theta
Illustration of an angle with labels for initial side, terminal side, and vertex.

Figure 4

Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, and rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In order to identify the different sides, we indicate the rotation with a small arc and arrow close to the vertex as in Figure 4. The following video provides an illustration of angles in standard position.

Converting Between Degrees and Radians

Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a full circle, or more than a full circle, represented by more than one full rotation. The length of the arc around an entire circle is called the circumference of that circle. The circumference of a circle is \displaystyle C=2\pi r. If we divide both sides of this equation by \displaystyle r, we create the ratio of the circumference to the radius, which is always \displaystyle 2\pi regardless of the length of the radius. So the circumference of any circle is \displaystyle 2\pi \approx 6.28 times the length of the radius. That means that if we took a string as long as the radius and used it to measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little more than a quarter of a seventh, as shown in Figure 10.
Illustration of a circle showing the number of radians in a circle.

Figure 10

This brings us to our new angle measure. One radian is the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle. A central angle is an angle formed at the center of a circle by two radii. Because the total circumference equals \displaystyle 2\pi times the radius, a full circular rotation is \displaystyle 2\pi radians. So
2π radians=360π radians=3602=1801 radian=180π57.3"> 2π radians=360π radians=3602=1801 radian=180π57.3 
Note that when an angle is described without a specific unit, it refers to radian measure. For example, an angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a length (circumference) divided by a length (radius) and the length units cancel out.
Illustration of a circle with angle t, radius r, and an arc of r.

Figure 11. The angle t sweeps out a measure of one radian. Note that the length of the intercepted arc is the same as the length of the radius of the circle.

Relating Arc Lengths to Radius

An arc length \displaystyle s is the length of the curve along the arc. Just as the full circumference of a circle always has a constant ratio to the radius, the arc length produced by any given angle also has a constant relation to the radius, regardless of the length of the radius. This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on the angle. This property allows us to define a measure of any angle as the ratio of the arc length \displaystyle s to the radius \displaystyle r.
  \displaystyle \begin{array}{l}s=r\theta \\ \theta =\frac{s}{r}\end{array}
If \displaystyle s=r, then \displaystyle \theta =\frac{r}{r}=\text{ 1 radian}\text{.} Three side by side graphs of circles. First graph has a circle with radius r and arc s, with an equivalence between r and s. The second graph shows a circle with radius r and an arc of length 2r. The third graph shows a circle with a full revolution, showing 6.28 radians. Figure 12. (a) In an angle of 1 radian, the arc length \displaystyle s equals the radius \displaystyle r. (b) An angle of 2 radians has an arc length \displaystyle s=2r. (c) A full revolution is \displaystyle 2\pi or about 6.28 radians. To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the circumference of a circle is \displaystyle C=2\pi r, where \displaystyle r is the radius. The smaller circle then has circumference \displaystyle 2\pi \left(2\right)=4\pi and the larger has circumference \displaystyle 2\pi \left(3\right)=6\pi. Now we draw a 45° angle on the two circles, as in Figure 13.
Graph of a circle with a 45 degree angle and a label for pi/4 radians.

Figure 13. A 45° angle contains one-eighth of the circumference of a circle, regardless of the radius.

Notice what happens if we find the ratio of the arc length divided by the radius of the circle.
  \displaystyle \begin{array}{c}\text{Smaller circle: }\frac{\frac{1}{2}\pi }{2}=\frac{1}{4}\pi \\ \text{ Larger circle: }\frac{\frac{3}{4}\pi }{3}=\frac{1}{4}\pi \end{array}
Since both ratios are \displaystyle \frac{1}{4}\pi, the angle measures of both circles are the same, even though the arc length and radius differ.

A GENERAL NOTE: RADIANS

One radian is the measure of the central angle of a circle such that the length of the arc between the initial side and the terminal side is equal to the radius of the circle. A full revolution (360°) equals \displaystyle 2\pi radians. A half revolution (180°) is equivalent to \displaystyle \pi radians. The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius of the circle. In other words, if \displaystyle s is the length of an arc of a circle, and \displaystyle r is the radius of the circle, then the central angle containing that arc measures \displaystyle \frac{s}{r}radians. In a circle of radius 1, the radian measure corresponds to the length of the arc.
Q & A

A MEASURE OF 1 RADIAN LOOKS TO BE ABOUT 60°. IS THAT CORRECT?

Yes. It is approximately 57.3°. Because  \displaystyle 2\pi radians equals 360°, \displaystyle 1 radian equals \displaystyle \frac{360^\circ }{2\pi }\approx 57.3^\circ.

Using Radians

Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in Figure 12, suppose the radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume that it is a radian measure. Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees, 360°. We can also track one rotation around a circle by finding the circumference, \displaystyle C=2\pi r, and for the unit circle \displaystyle C=2\pi. These two different ways to rotate around a circle give us a way to convert from degrees to radians.
1 rotation =360=2πradians12 rotation=180=πradians14 rotation=90=π2radians"> 1 rotation =360=2πradians12 rotation=180=πradians14 rotation=90=π2radians 

Identifying Special Angles Measured in Radians

In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in Figure 14. Memorizing these angles will be very useful as we study the properties associated with angles.
A graph of a circle with angles of 0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330 degrees.

Figure 14. Commonly encountered angles measured in degrees

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in Figure 14, which are shown in Figure 15. Be sure you can verify each of these measures.
A graph of a circle with angles of 0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330 degrees. The graph also shows the equivalent amount of radians for each angle of degrees. For example, 30 degrees is equal to pi/6 radians.

Figure 15. Commonly encountered angles measured in radians

EXAMPLE 2: FINDING A RADIAN MEASURE

Find the radian measure of one-third of a full rotation.

SOLUTION

For any circle, the arc length along such a rotation would be one-third of the circumference. We know that
  \displaystyle 1\text{ rotation}=2\pi r
So,
s=13(2πr)=2πr3"> s=13(2πr)=2πr3 
The radian measure would be the arc length divided by the radius.
radian measure=2πr3r=2πr3r=2π3  "> radian measure=2πr3r=2πr3r=2π3   

TRY IT 2

Find the radian measure of three-fourths of a full rotation. Solution

Converting between Radians and Degrees

Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so using a proportion.
  \displaystyle \frac{\theta }{180}=\frac{{\theta }^{R}}{\pi }
This proportion shows that the measure of angle \displaystyle \theta in degrees divided by 180 equals the measure of angle \displaystyle \theta in radians divided by \displaystyle \pi . Or, phrased another way, degrees is to 180 as radians is to \displaystyle \pi.
  \displaystyle \frac{\text{Degrees}}{180}=\frac{\text{Radians}}{\pi }

Converting between Radians and Degrees

To convert between degrees and radians, use the proportion
  \displaystyle \frac{\theta }{180}=\frac{{\theta }^{R}}{\pi }

EXAMPLE 3: CONVERTING RADIANS TO DEGREES

Convert each radian measure to degrees. a. \displaystyle \frac{\pi }{6} b. 3

SOLUTION

Because we are given radians and we want degrees, we should set up a proportion and solve it. a. We use the proportion, substituting the given information.
θ180=θRπθ180=π6π θ=1806 θ=30"> θ180=θRπθ180=π6π θ=1806 θ=30 
b. We use the proportion, substituting the given information. θ180=θRπθ180=3π θ=3(180)π θ172"> θ180=θRπθ180=3π θ=3(180)π θ172 

TRY IT 3

Convert \displaystyle -\frac{3\pi }{4} radians to degrees. Solution

EXAMPLE 4: CONVERTING DEGREES TO RADIANS

Convert \displaystyle 15 degrees to radians.

SOLUTION

In this example, we start with degrees and want radians, so we again set up a proportion and solve it, but we substitute the given information into a different part of the proportion.
θ180=θRπ15180=θRπ15π180=θRπ12=θR"> θ180=θRπ15180=θRπ15π180=θRπ12=θR 

Analysis of the Solution

Another way to think about this problem is by remembering that \displaystyle {30}^{\circ }=\frac{\pi }{6}. Because \displaystyle {15}^{\circ }=\frac{1}{2}\left({30}^{\circ }\right), we can find that \displaystyle \frac{1}{2}\left(\frac{\pi }{6}\right) is \displaystyle \frac{\pi }{12}.

TRY IT 4

Convert 126° to radians. Solution
Watch the following video for an explanation of radian measure and examples of converting between radians and degrees.
Any angle has infinitely many coterminal angles because each time we add 360° to that angle—or subtract 360° from it—the resulting value has a terminal side in the same location. For example, 100° and 460° are coterminal for this reason, as is −260°. Recognizing that any angle has infinitely many coterminal angles explains the repetitive shape in the graphs of trigonometric functions. An angle’s reference angle is the measure of the smallest, positive, acute angle \displaystyle t formed by the terminal side of the angle \displaystyle t and the horizontal axis. Thus positive reference angles have terminal sides that lie in the first quadrant and can be used as models for angles in other quadrants. See Figure 17 for examples of reference angles for angles in different quadrants.
Four side by side graphs. First graph shows an angle of t in quadrant 1 in it's normal position. Second graph shows an angle of t in quadrant 2 due to a rotation of pi minus t. Third graph shows an angle of t in quadrant 3 due to a rotation of t minus pi. Fourth graph shows an angle of t in quadrant 4 due to a rotation of two pi minus t.

Figure 17

 

A GENERAL NOTE: COTERMINAL AND REFERENCE ANGLES

Coterminal angles are two angles in standard position that have the same terminal side. An angle’s reference angle is the size of the smallest acute angle, \displaystyle {t}^{\prime }, formed by the terminal side of the angle \displaystyle t and the horizontal axis.

HOW TO: GIVEN AN ANGLE GREATER THAN 360°, FIND A COTERMINAL ANGLE BETWEEN 0° AND 360°.

  1. Subtract 360° from the given angle.
  2. If the result is still greater than 360°, subtract 360° again till the result is between 0° and 360°.
  3. The resulting angle is coterminal with the original angle.

EXAMPLE 5: FINDING AN ANGLE COTERMINAL WITH AN ANGLE OF MEASURE GREATER THAN 360°

Find the least positive angle \displaystyle \theta that is coterminal with an angle measuring 800°, where \displaystyle 0^\circ \le \theta <360^\circ.

SOLUTION

An angle with measure 800° is coterminal with an angle with measure 800 − 360 = 440°, but 440° is still greater than 360°, so we subtract 360° again to find another coterminal angle: 440 − 360 = 80°. The angle \displaystyle \theta =80^\circ is coterminal with 800°. To put it another way, 800° equals 80° plus two full rotations, as shown in Figure 18.
A graph showing the equivalence between an 80 degree angle and an 800 degree angle.

Figure 18

TRY IT 5

Find an angle \displaystyle \alpha that is coterminal with an angle measuring 870°, where \displaystyle 0^\circ \le \alpha <360^\circ. Solution

HOW TO: GIVEN AN ANGLE WITH MEASURE LESS THAN 0°, FIND A COTERMINAL ANGLE HAVING A MEASURE BETWEEN 0° AND 360°.

  1. Add 360° to the given angle.
  2. If the result is still less than 0°, add 360° again until the result is between 0° and 360°.
  3. The resulting angle is coterminal with the original angle.

EXAMPLE 6: FINDING AN ANGLE COTERMINAL WITH AN ANGLE MEASURING LESS THAN 0°

Show the angle with measure −45° on a circle and find a positive coterminal angle \displaystyle \alpha such that 0° ≤ α < 360°.

SOLUTION

Since 45° is half of 90°, we can start at the positive horizontal axis and measure clockwise half of a 90° angle. Because we can find coterminal angles by adding or subtracting a full rotation of 360°, we can find a positive coterminal angle here by adding 360°:
  \displaystyle -45^\circ +360^\circ =315^\circ
We can then show the angle on a circle, as in Figure 19.
A graph showing the equivalence of a 315 degree angle and a negative 45 degree angle.

Figure 19

Watch this video for another example of how to determine positive and negative coterminal angles.

TRY IT 6

Find an angle \displaystyle \beta that is coterminal with an angle measuring −300° such that \displaystyle 0^\circ \le \beta <360^\circ. Solution

Finding Coterminal Angles Measured in Radians

We can find coterminal angles measured in radians in much the same way as we have found them using degrees. In both cases, we find coterminal angles by adding or subtracting one or more full rotations.
Given an angle greater than \displaystyle 2\pifind a coterminal angle between 0 and \displaystyle 2\pi.
  1. Subtract  \displaystyle 2\pi   from the given angle.
  2. If the result is still greater than  \displaystyle 2\pi  , subtract \displaystyle 2\pi   again until the result is between \displaystyle 0   and \displaystyle 2\pi  .
  3. The resulting angle is coterminal with the original angle.

EXAMPLE 7: FINDING COTERMINAL ANGLES USING RADIANS

Find an angle \displaystyle \beta that is coterminal with \displaystyle \frac{19\pi }{4}, where \displaystyle 0\le \beta <2\pi.

SOLUTION

When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation. Likewise, in radians, we can find coterminal angles by adding or subtracting full rotations of \displaystyle 2\pi radians:
19π42π=19π48π4=11π4"> 19π42π=19π48π4=11π4 
The angle \displaystyle \frac{11\pi }{4} is coterminal, but not less than \displaystyle 2\pi, so we subtract another rotation:
11π42π=11π48π4=3π4"> 11π42π=11π48π4=3π4 
The angle \displaystyle \frac{3\pi }{4} is coterminal with \displaystyle \frac{19\pi }{4}, as shown in Figure 20.
A graph showing a circle and the equivalence between angles of 3pi/4 radians and 19pi/4 radians.

Figure 20

TRY IT 7

Find an angle of measure \displaystyle \theta that is coterminal with an angle of measure \displaystyle -\frac{17\pi }{6} where \displaystyle 0\le \theta <2\pi. Solution
Recall that the radian measure [latex]\theta [/latex] of an angle was defined as the ratio of the arc length [latex]s[/latex] of a circular arc to the radius [latex]r[/latex] of the circle, [latex]\theta =\frac{s}{r}[/latex]. From this relationship, we can find arc length along a circle, given an angle.

A General Note: Arc Length on a Circle

In a circle of radius r, the length of an arc [latex]s[/latex] subtended by an angle with measure [latex]\theta [/latex] in radians, shown in Figure 20, is
[latex-display]s=r\theta [/latex-display]
Illustration of circle with angle theta, radius r, and arc with length s. Figure 20

How To: Given a circle of radius [latex]r[/latex], calculate the length [latex]s[/latex] of the arc subtended by a given angle of measure [latex]\theta [/latex].

  1. If necessary, convert [latex]\theta [/latex] to radians.
  2. Multiply the radius [latex]r[/latex] by the radian measure of [latex]\theta :s=r\theta [/latex].

Example 8: Finding the Length of an Arc

Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from the sun.
  1. In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one day?
  2. Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.

Solution

  1. Let’s begin by finding the circumference of Mercury’s orbit.
    [latex]\begin{array}{l}C=2\pi r\hfill \\ =2\pi \left(36\text{ million miles}\right)\hfill \\ \approx 226\text{ million miles}\hfill \end{array}[/latex]
    Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance traveled:
    [latex]\left(0.0114\right)226\text{ million miles = 2}\text{.58 million miles}[/latex]
  2. Now, we convert to radians:
    [latex]\begin{array}{l}\text{radian}=\frac{\text{arclength}}{\text{radius}}\hfill \\ =\frac{2.\text{58 million miles}}{36\text{ million miles}}\hfill \\ =0.0717\hfill \end{array}[/latex]

Try It 8

Find the arc length along a circle of radius 10 units subtended by an angle of 215°. Solution

Finding the Area of a Sector of a Circle

In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region of a circle bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a circle with radius [latex]r[/latex] can be found using the formula [latex]A=\pi {r}^{2}[/latex]. If the two radii form an angle of [latex]\theta [/latex], measured in radians, then [latex]\frac{\theta }{2\pi }[/latex] is the ratio of the angle measure to the measure of a full rotation and is also, therefore, the ratio of the area of the sector to the area of the circle. Thus, the area of a sector is the fraction [latex]\frac{\theta }{2\pi }[/latex] multiplied by the entire area. (Always remember that this formula only applies if [latex]\theta [/latex] is in radians.)
[latex]\begin{array}{l}\text{Area of sector}=\left(\frac{\theta }{2\pi }\right)\pi {r}^{2}\hfill \\ =\frac{\theta \pi {r}^{2}}{2\pi }\hfill \\ =\frac{1}{2}\theta {r}^{2}\hfill \end{array}[/latex]

A General Note: Area of a Sector

The area of a sector of a circle with radius [latex]r[/latex] subtended by an angle [latex]\theta [/latex], measured in radians, is

[latex]A=\frac{1}{2}\theta {r}^{2}[/latex]

Graph showing a circle with angle theta and radius r, and the area of the slice of circle created by the initial side and terminal side of the angle. Figure 21. The area of the sector equals half the square of the radius times the central angle measured in radians.

How To: Given a circle of radius [latex]r[/latex], find the area of a sector defined by a given angle [latex]\theta [/latex].

  1. If necessary, convert [latex]\theta [/latex] to radians.
  2. Multiply half the radian measure of [latex]\theta [/latex] by the square of the radius [latex]r:\text{ } A=\frac{1}{2}\theta {r}^{2}[/latex].

Example 9: Finding the Area of a Sector

An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees, as shown in Figure 22. What is the area of the sector of grass the sprinkler waters?
Illustration of a 30 degree ange with a terminal and initial side with length of 20 feet. Figure 22. The sprinkler sprays 20 ft within an arc of 30°.

Solution

First, we need to convert the angle measure into radians. Because 30 degrees is one of our special angles, we already know the equivalent radian measure, but we can also convert:
[latex]\begin{array}{l}30\text{ degrees}=30\cdot \frac{\pi }{180}\hfill \\ =\frac{\pi }{6}\text{ radians}\hfill \end{array}[/latex]
The area of the sector is then
[latex]\begin{array}{l}\text{Area = }\frac{1}{2}\left(\frac{\pi }{6}\right){\left(20\right)}^{2}\hfill \\ \text{ }\approx 104.72\hfill \end{array}[/latex]
So the area is about [latex]104.72{\text{ ft}}^{2}[/latex].

Try It 9

In central pivot irrigation, a large irrigation pipe on wheels rotates around a center point. A farmer has a central pivot system with a radius of 400 meters. If water restrictions only allow her to water 150 thousand square meters a day, what angle should she set the system to cover? Write the answer in radian measure to two decimal places. Solution
In the following video you will see how to calculate arc length and area of a sector of a circle. https://youtu.be/zD4CsKIYEHo

Use Linear and Angular Speed to Describe Motion on a Circular Path

In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An object traveling in a circular path has two types of speed. Linear speed is speed along a straight path and can be determined by the distance it moves along (its displacement) in a given time interval. For instance, if a wheel with radius 5 inches rotates once a second, a point on the edge of the wheel moves a distance equal to the circumference, or [latex]10\pi [/latex] inches, every second. So the linear speed of the point is [latex]10\pi [/latex] in./s. The equation for linear speed is as follows where [latex]v[/latex] is linear speed, [latex]s[/latex] is displacement, and [latex]t[/latex] is time.
[latex]v=\frac{s}{t}\\[/latex]
Angular speed results from circular motion and can be determined by the angle through which a point rotates in a given time interval. In other words, angular speed is angular rotation per unit time. So, for instance, if a gear makes a full rotation every 4 seconds, we can calculate its angular speed as [latex]\frac{360\text{ degrees}}{4\text{ seconds}}=\\[/latex] 90 degrees per second. Angular speed can be given in radians per second, rotations per minute, or degrees per hour for example. The equation for angular speed is as follows, where [latex]\omega [/latex] (read as omega) is angular speed, [latex]\theta [/latex] is the angle traversed, and [latex]t[/latex] is time.
[latex]\omega =\frac{\theta }{t}\\[/latex]
Combining the definition of angular speed with the arc length equation, [latex]s=r\theta [/latex], we can find a relationship between angular and linear speeds. The angular speed equation can be solved for [latex]\theta [/latex], giving [latex]\theta =\omega t\\[/latex]. Substituting this into the arc length equation gives:
[latex]\begin{array}{l}s=r\theta \hfill \\ =r\omega t\hfill \end{array}\\[/latex]
Substituting this into the linear speed equation gives:
[latex]\begin{array}{l}\begin{array}{l}\\ v=\frac{s}{t}\end{array}\hfill \\ \text{ }=\frac{r\omega t}{t}\hfill \\ \text{ }=r\omega \hfill \end{array}\\[/latex]

A General Note: Angular and Linear Speed

As a point moves along a circle of radius [latex]r[/latex], its angular speed, [latex]\omega [/latex], is the angular rotation [latex]\theta [/latex] per unit time, [latex]t[/latex].
[latex]\omega =\frac{\theta }{t}\\[/latex]
The linear speed. [latex]v[/latex], of the point can be found as the distance traveled, arc length [latex]s[/latex], per unit time, [latex]t[/latex].
[latex]v=\frac{s}{t}\\[/latex]
When the angular speed is measured in radians per unit time, linear speed and angular speed are related by the equation
[latex]v=r\omega \\[/latex]
This equation states that the angular speed in radians, [latex]\omega [/latex], representing the amount of rotation occurring in a unit of time, can be multiplied by the radius [latex]r[/latex] to calculate the total arc length traveled in a unit of time, which is the definition of linear speed.

How To: Given the amount of angle rotation and the time elapsed, calculate the angular speed.

  1. If necessary, convert the angle measure to radians.
  2. Divide the angle in radians by the number of time units elapsed: [latex]\omega =\frac{\theta }{t}\\[/latex] .
  3. The resulting speed will be in radians per time unit.

Example 10: Finding Angular Speed

A water wheel, shown in Figure 23, completes 1 rotation every 5 seconds. Find the angular speed in radians per second.
Illustration of a water wheel. Figure 23

Solution

The wheel completes 1 rotation, or passes through an angle of [latex]2\pi [/latex] radians in 5 seconds, so the angular speed would be [latex]\omega =\frac{2\pi }{5}\approx 1.257\\[/latex] radians per second.

Try It 10

An old vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per minute. Find the angular speed in radians per second. Solution

How To: Given the radius of a circle, an angle of rotation, and a length of elapsed time, determine the linear speed.

  1. Convert the total rotation to radians if necessary.
  2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply [latex]\omega =\frac{\theta }{t}\\[/latex].
  3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of the length unit used for the radius and the time unit used for the elapsed time: apply [latex]v=r\mathrm{\omega .}\\[/latex]

Example 11: Finding a Linear Speed

A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is traveling down the road.

Solution

Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed of the outside of the tires is the speed at which the bicycle travels down the road. We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the units to make this conversion:
[latex]180\frac{\overline{)\text{rotations}}}{\text{minute}}\cdot \frac{2\pi \text{radians}}{\overline{)\text{rotation}}}=360\pi \frac{\text{radians}}{\text{minute}}\\[/latex]
Using the formula from above along with the radius of the wheels, we can find the linear speed:
[latex]\begin{array}{l}\begin{array}{l}\\ v=\left(14\text{inches}\right)\left(360\pi \frac{\text{radians}}{\text{minute}}\right)\end{array}\hfill \\ =5040\pi \frac{\text{inches}}{\text{minute}}\hfill \end{array}\\[/latex]
Remember that radians are a unitless measure, so it is not necessary to include them. Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.
[latex]5040\pi \frac{\overline{)\text{inches}}}{\overline{)\text{minute}}}\cdot \frac{\text{1 }\overline{)\text{feet}}}{\text{12 }\overline{)\text{inches}}}\cdot \frac{\text{1 mile}}{\text{5280 }\overline{)\text{feet}}}\cdot \frac{\text{60 }\overline{)\text{minutes}}}{\text{1 hour}}\approx 14.99\text{miles per hour (mph)}\\[/latex]

Try It 11

A satellite is rotating around Earth at 0.25 radians per hour at an altitude of 242 km above Earth. If the radius of Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour. Solution
https://youtu.be/bfWkgA5GSE0

Key Equations

arc length [latex]s=r\theta [/latex]
area of a sector [latex]A=\frac{1}{2}\theta {r}^{2}[/latex]
angular speed [latex]\omega =\frac{\theta }{t}[/latex]
linear speed [latex]v=\frac{s}{t}[/latex]
linear speed related to angular speed [latex]v=r\omega [/latex]

Key Concepts

Glossary

angle
the union of two rays having a common endpoint
angular speed
the angle through which a rotating object travels in a unit of time
arc length
the length of the curve formed by an arc
area of a sector
area of a portion of a circle bordered by two radii and the intercepted arc; the fraction [latex]\frac{\theta }{2\pi }[/latex] multiplied by the area of the entire circle
coterminal angles
description of positive and negative angles in standard position sharing the same terminal side
degree
a unit of measure describing the size of an angle as one-360th of a full revolution of a circle
initial side
the side of an angle from which rotation begins
linear speed
the distance along a straight path a rotating object travels in a unit of time; determined by the arc length
measure of an angle
the amount of rotation from the initial side to the terminal side
negative angle
description of an angle measured clockwise from the positive x-axis
positive angle
description of an angle measured counterclockwise from the positive x-axis
quadrantal angle
an angle whose terminal side lies on an axis
radian measure
the ratio of the arc length formed by an angle divided by the radius of the circle
radian
the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle
ray
one point on a line and all points extending in one direction from that point; one side of an angle
reference angle
the measure of the acute angle formed by the terminal side of the angle and the horizontal axis
standard position
the position of an angle having the vertex at the origin and the initial side along the positive x-axis
terminal side
the side of an angle at which rotation ends
vertex
the common endpoint of two rays that form an angle

Section Exercises

1. Draw an angle in standard position. Label the vertex, initial side, and terminal side. 2. Explain why there are an infinite number of angles that are coterminal to a certain angle. 3. State what a positive or negative angle signifies, and explain how to draw each. 4. How does radian measure of an angle compare to the degree measure? Include an explanation of 1 radian in your paragraph. 5. Explain the differences between linear speed and angular speed when describing motion along a circular path. For the following exercises, draw an angle in standard position with the given measure. 6. 30° 7. 300° 8. −80° 9. 135° 10. −150° 11. [latex]\frac{2\pi }{3}[/latex] 12. [latex]\frac{7\pi }{4}[/latex] 13. [latex]\frac{5\pi }{6}[/latex] 14. [latex]\frac{\pi }{2}[/latex] 15. [latex]-\frac{\pi }{10}[/latex] 16. 415° 17. −120° 18. −315° 19. [latex]\frac{22\pi }{3}[/latex] 20. [latex]-\frac{\pi }{6}[/latex] 21. [latex]-\frac{4\pi }{3}[/latex]
Graph of a circle with radius of 3 inches and an angle of 140 degrees. Figure 24
For the following exercises, refer to Figure 24. Round to two decimal places. 22. Find the arc length. 23. Find the area of the sector.
Graph of a circle with angle of 2pi/5 and a radius of 4.5 cm. Figure 25
For the following exercises, refer to Figure 25. Round to two decimal places. 24. Find the arc length. 25. Find the area of the sector. For the following exercises, convert angles in radians to degrees. 26. [latex]\frac{3\pi }{4}[/latex] radians 27. [latex]\frac{\pi }{9}[/latex] radians 28. [latex]-\frac{5\pi }{4}[/latex] radians 29. [latex]\frac{\pi }{3}[/latex] radians 30. [latex]-\frac{7\pi }{3}[/latex] radians 31. [latex]-\frac{5\pi }{12}[/latex] radians 32. [latex]\frac{11\pi }{6}[/latex] radians For the following exercises, convert angles in degrees to radians. 33. 90° 34. 100° 35. −540° 36. −120° 37. 180° 38. −315° 39. 150° For the following exercises, use to given information to find the length of a circular arc. Round to two decimal places. 40. Find the length of the arc of a circle of radius 12 inches subtended by a central angle of [latex]\frac{\pi }{4}[/latex] radians. 41. Find the length of the arc of a circle of radius 5.02 miles subtended by the central angle of [latex]\frac{\pi }{3}[/latex]. 42. Find the length of the arc of a circle of diameter 14 meters subtended by the central angle of [latex]\frac{5\pi }{6}[/latex]. 43. Find the length of the arc of a circle of radius 10 centimeters subtended by the central angle of 50°. 44. Find the length of the arc of a circle of radius 5 inches subtended by the central angle of 220°. 45. Find the length of the arc of a circle of diameter 12 meters subtended by the central angle is 63°. For the following exercises, use the given information to find the area of the sector. Round to four decimal places. 46. A sector of a circle has a central angle of 45° and a radius 6 cm. 47. A sector of a circle has a central angle of 30° and a radius of 20 cm. 48. A sector of a circle with diameter 10 feet and an angle of [latex]\frac{\pi }{2}[/latex] radians. 49. A sector of a circle with radius of 0.7 inches and an angle of [latex]\pi [/latex] radians. For the following exercises, find the angle between 0° and 360° that is coterminal to the given angle. 50. −40° 51. −110° 52. 700° 53. 1400° For the following exercises, find the angle between 0 and [latex]2\pi [/latex] in radians that is coterminal to the given angle. 54. [latex]-\frac{\pi }{9}[/latex] 55. [latex]\frac{10\pi }{3}[/latex] 56. [latex]\frac{13\pi }{6}[/latex] 57. [latex]\frac{44\pi }{9}[/latex] 58. A truck with 32-inch diameter wheels is traveling at 60 mi/h. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make? 59. A bicycle with 24-inch diameter wheels is traveling at 15 mi/h. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make? 60. A wheel of radius 8 inches is rotating 15°/s. What is the linear speed [latex]v[/latex], the angular speed in RPM, and the angular speed in rad/s? 61. A wheel of radius 14 inches is rotating 0.5 rad/s. What is the linear speed [latex]v[/latex], the angular speed in RPM, and the angular speed in deg/s? 62. A CD has diameter of 120 millimeters. When playing audio, the angular speed varies to keep the linear speed constant where the disc is being read. When reading along the outer edge of the disc, the angular speed is about 200 RPM (revolutions per minute). Find the linear speed. 63. When being burned in a writable CD-R drive, the angular speed of a CD is often much faster than when playing audio, but the angular speed still varies to keep the linear speed constant where the disc is being written. When writing along the outer edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per minute). Find the linear speed if the CD has diameter of 120 millimeters. 64. A person is standing on the equator of Earth (radius 3960 miles). What are his linear and angular speeds? 65. Find the distance along an arc on the surface of Earth that subtends a central angle of 5 minutes [latex]\left(1\text{ minute}=\frac{1}{60}\text{ degree}\right)[/latex] . The radius of Earth is 3960 miles. 66. Find the distance along an arc on the surface of Earth that subtends a central angle of 7 minutes [latex]\left(1\text{ minute}=\frac{1}{60}\text{ degree}\right)[/latex]. The radius of Earth is [latex]3960[/latex] miles. 67. Consider a clock with an hour hand and minute hand. What is the measure of the angle the minute hand traces in [latex]20[/latex] minutes? 68. Two cities have the same longitude. The latitude of city A is 9.00 degrees north and the latitude of city B is 30.00 degree north. Assume the radius of the earth is 3960 miles. Find the distance between the two cities. 69. A city is located at 40 degrees north latitude. Assume the radius of the earth is 3960 miles and the earth rotates once every 24 hours. Find the linear speed of a person who resides in this city. 70. A city is located at 75 degrees north latitude. Assume the radius of the earth is 3960 miles and the earth rotates once every 24 hours. Find the linear speed of a person who resides in this city. 71. Find the linear speed of the moon if the average distance between the earth and moon is 239,000 miles, assuming the orbit of the moon is circular and requires about 28 days. Express answer in miles per hour. 72. A bicycle has wheels 28 inches in diameter. A tachometer determines that the wheels are rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is travelling down the road. 73. A car travels 3 miles. Its tires make 2640 revolutions. What is the radius of a tire in inches? 74. A wheel on a tractor has a 24-inch diameter. How many revolutions does the wheel make if the tractor travels 4 miles?

Licenses & Attributions

CC licensed content, Original

CC licensed content, Shared previously