We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Precalculus II

Solution to Finding Limits: Properties of Limits

Solutions to Try Its

1. 26 2. 59 3. 10 4. [latex]-64[/latex] 5. [latex]-3[/latex] 6. [latex]-\frac{1}{50}[/latex] 7. [latex]-\frac{1}{8}[/latex] 8. [latex]2\sqrt{3}[/latex] 9. [latex]-1[/latex]

Solutions to Odd-Numbered Exercises

1. If [latex]f[/latex] is a polynomial function, the limit of a polynomial function as [latex]x[/latex] approaches [latex]a[/latex] will always be [latex]f\left(a\right)[/latex]. 3. It could mean either (1) the values of the function increase or decrease without bound as [latex]x[/latex] approaches [latex]c[/latex], or (2) the left and right-hand limits are not equal. 5. [latex]\frac{-10}{3}[/latex] 7. 6 9. [latex]\frac{1}{2}[/latex] 11. 6 13. does not exist 15. [latex]-12[/latex] 17. [latex]-\frac{\sqrt{5}}{10}[/latex] 19. [latex]-108[/latex] 21. 1 23. 6 25. 1 27. 1 29. does not exist 31. [latex]6+\sqrt{5}[/latex] 33. [latex]\frac{3}{5}[/latex] 35. 0 37. [latex]-3[/latex] 39. does not exist; right-hand limit is not the same as the left-hand limit. 41. Limit does not exist; limit approaches infinity. 43. [latex]4x+2h[/latex] 45. [latex]2x+h+4[/latex] 47. [latex]\frac{\cos \left(x+h\right)-\cos \left(x\right)}{h}[/latex] 49. [latex]\frac{-1}{x\left(x+h\right)}[/latex] 51. [latex]\frac{-1}{\sqrt{x+h}+\sqrt{x}}[/latex] 53. [latex]f\left(x\right)=\frac{{x}^{2}+5x+6}{x+3}[/latex] 55. does not exist 57. 52

Licenses & Attributions

CC licensed content, Specific attribution