Solutions
Solutions to Try Its
1. End behavior: as [latex]x\to \pm \infty , f\left(x\right)\to 0\\[/latex]; Local behavior: as [latex]x\to 0, f\left(x\right)\to \infty \\[/latex] (there are no x- or y-intercepts)
2. The function and the asymptotes are shifted 3 units right and 4 units down. As [latex]x\to 3,f\left(x\right)\to \infty\\ [/latex], and as [latex]x\to \pm \infty ,f\left(x\right)\to -4\\[/latex].
The function is [latex]f\left(x\right)=\frac{1}{{\left(x - 3\right)}^{2}}-4\\[/latex].
3. [latex]\frac{12}{11}\\[/latex]
4. The domain is all real numbers except [latex]x=1\\[/latex] and [latex]x=5\\[/latex].
5. Removable discontinuity at [latex]x=5\\[/latex]. Vertical asymptotes: [latex]x=0,\text{ }x=1\\[/latex].
6. Vertical asymptotes at [latex]x=2\\[/latex] and [latex]x=-3\\[/latex]; horizontal asymptote at [latex]y=4\\[/latex].
7. For the transformed reciprocal squared function, we find the rational form. [latex]f\left(x\right)=\frac{1}{{\left(x - 3\right)}^{2}}-4=\frac{1 - 4{\left(x - 3\right)}^{2}}{{\left(x - 3\right)}^{2}}=\frac{1 - 4\left({x}^{2}-6x+9\right)}{\left(x - 3\right)\left(x - 3\right)}=\frac{-4{x}^{2}+24x - 35}{{x}^{2}-6x+9}\\[/latex]
Because the numerator is the same degree as the denominator we know that as [latex]x\to \pm \infty , f\left(x\right)\to -4; \text{so } y=-4\\[/latex] is the horizontal asymptote. Next, we set the denominator equal to zero, and find that the vertical asymptote is [latex]x=3\\[/latex], because as [latex]x\to 3,f\left(x\right)\to \infty \\[/latex]. We then set the numerator equal to 0 and find the x-intercepts are at [latex]\left(2.5,0\right)\\[/latex] and [latex]\left(3.5,0\right)\\[/latex]. Finally, we evaluate the function at 0 and find the y-intercept to be at [latex]\left(0,\frac{-35}{9}\right)\\[/latex].
8. Horizontal asymptote at [latex]y=\frac{1}{2}\\[/latex]. Vertical asymptotes at [latex]x=1 \text{and} x=3\\[/latex]. y-intercept at [latex]\left(0,\frac{4}{3}.\right)\\[/latex]
x-intercepts at [latex]\left(2,0\right) \text{ and }\left(-2,0\right)\\[/latex]. [latex]\left(-2,0\right)\\[/latex] is a zero with multiplicity 2, and the graph bounces off the x-axis at this point. [latex]\left(2,0\right)\\[/latex] is a single zero and the graph crosses the axis at this point.
Solutions to Try Its
1. The rational function will be represented by a quotient of polynomial functions.
3. The numerator and denominator must have a common factor.
5. Yes. The numerator of the formula of the functions would have only complex roots and/or factors common to both the numerator and denominator.
7. [latex]\text{All reals }x\ne -1, 1\\[/latex]
9. [latex]\text{All reals }x\ne -1, -2, 1, 2\\[/latex]
11. V.A. at [latex]x=-\frac{2}{5}\\[/latex]; H.A. at [latex]y=0\\[/latex]; Domain is all reals [latex]x\ne -\frac{2}{5}\\[/latex]
13. V.A. at [latex]x=4, -9\\[/latex]; H.A. at [latex]y=0\\[/latex]; Domain is all reals [latex]x\ne 4, -9\\[/latex]
15. V.A. at [latex]x=0, 4, -4\\[/latex]; H.A. at [latex]y=0\\[/latex]; Domain is all reals [latex]x\ne 0,4, -4\\[/latex]
17. V.A. at [latex]x=-5\\[/latex]; H.A. at [latex]y=0\\[/latex]; Domain is all reals [latex]x\ne 5,-5\\[/latex]
19. V.A. at [latex]x=\frac{1}{3}\\[/latex]; H.A. at [latex]y=-\frac{2}{3}\\[/latex]; Domain is all reals [latex]x\ne \frac{1}{3}\\[/latex].
21. none
23. [latex]x\text{-intercepts none, }y\text{-intercept }\left(0,\frac{1}{4}\right)\\[/latex]
25. Local behavior: [latex]x\to -{\frac{1}{2}}^{+},f\left(x\right)\to -\infty ,x\to -{\frac{1}{2}}^{-},f\left(x\right)\to \infty \\[/latex]
End behavior: [latex]x\to \pm \infty ,f\left(x\right)\to \frac{1}{2}\\[/latex]
27. Local behavior: [latex]x\to {6}^{+},f\left(x\right)\to -\infty ,x\to {6}^{-},f\left(x\right)\to \infty \\[/latex], End behavior: [latex]x\to \pm \infty ,f\left(x\right)\to -2\\[/latex]
29. Local behavior: [latex]x\to -{\frac{1}{3}}^{+},f\left(x\right)\to \infty ,x\to -{\frac{1}{3}}^{-}\\[/latex], [latex]f\left(x\right)\to -\infty ,x\to {\frac{5}{2}}^{-},f\left(x\right)\to \infty ,x\to {\frac{5}{2}}^{+}\\[/latex] , [latex]f\left(x\right)\to -\infty \\[/latex]
End behavior: [latex]x\to \pm \infty\\ [/latex], [latex]f\left(x\right)\to \frac{1}{3}\\[/latex]
31. [latex]y=2x+4\\[/latex]
33. [latex]y=2x\\[/latex]
35. [latex]V.A.\text{ }x=0,H.A.\text{ }y=2\\[/latex]
37. [latex]V.A.\text{ }x=2,\text{ }H.A.\text{ }y=0\\[/latex]
39. [latex]V.A.\text{ }x=-4,\text{ }H.A.\text{ }y=2;\left(\frac{3}{2},0\right);\left(0,-\frac{3}{4}\right)\\[/latex]
41. [latex]V.A.\text{ }x=2,\text{ }H.A.\text{ }y=0,\text{ }\left(0,1\right)\\[/latex]
43. [latex]V.A.\text{ }x=-4,\text{ }x=\frac{4}{3},\text{ }H.A.\text{ }y=1;\left(5,0\right);\left(-\frac{1}{3},0\right);\left(0,\frac{5}{16}\right)\\[/latex]
45. [latex]V.A.\text{ }x=-1,\text{ }H.A.\text{ }y=1;\left(-3,0\right);\left(0,3\right)\\[/latex]
47. [latex]V.A.\text{ }x=4,\text{ }S.A.\text{ }y=2x+9;\left(-1,0\right);\left(\frac{1}{2},0\right);\left(0,\frac{1}{4}\right)\\[/latex]
49. [latex]V.A.\text{ }x=-2,\text{ }x=4,\text{ }H.A.\text{ }y=1,\left(1,0\right);\left(5,0\right);\left(-3,0\right);\left(0,-\frac{15}{16}\right)\\[/latex]
51. [latex]y=50\frac{{x}^{2}-x - 2}{{x}^{2}-25}\\[/latex]
53. [latex]y=7\frac{{x}^{2}+2x - 24}{{x}^{2}+9x+20}\\[/latex]
55. [latex]y=\frac{1}{2}\frac{{x}^{2}-4x+4}{x+1}\\[/latex]
57. [latex]y=4\frac{x - 3}{{x}^{2}-x - 12}\\[/latex]
59. [latex]y=-9\frac{x - 2}{{x}^{2}-9}\\[/latex]
61. [latex]y=\frac{1}{3}\frac{{x}^{2}+x - 6}{x - 1}\\[/latex]
63. [latex]y=-6\frac{{\left(x - 1\right)}^{2}}{\left(x+3\right){\left(x - 2\right)}^{2}}\\[/latex]
65.
x |
2.01 |
2.001 |
2.0001 |
1.99 |
1.999 |
y |
100 |
1,000 |
10,000 |
–100 |
–1,000 |
x |
10 |
100 |
1,000 |
10,000 |
100,000 |
y |
.125 |
.0102 |
.001 |
.0001 |
.00001 |
Vertical asymptote [latex]x=2\\[/latex], Horizontal asymptote [latex]y=0\\[/latex]
67.
x |
–4.1 |
–4.01 |
–4.001 |
–3.99 |
–3.999 |
y |
82 |
802 |
8,002 |
–798 |
–7998 |
x |
10 |
100 |
1,000 |
10,000 |
100,000 |
y |
1.4286 |
1.9331 |
1.992 |
1.9992 |
1.999992 |
Vertical asymptote [latex]x=-4\\[/latex], Horizontal asymptote [latex]y=2\\[/latex]
69.
x |
–.9 |
–.99 |
–.999 |
–1.1 |
–1.01 |
y |
81 |
9,801 |
998,001 |
121 |
10,201 |
x |
10 |
100 |
1,000 |
10,000 |
100,000 |
y |
.82645 |
.9803 |
.998 |
.9998 |
|
Vertical asymptote [latex]x=-1\\[/latex], Horizontal asymptote [latex]y=1\\[/latex]
71. [latex]\left(\frac{3}{2},\infty \right)\\[/latex]
73. [latex]\left(-2,1\right)\cup \left(4,\infty \right)\\[/latex]
75. [latex]\left(2,4\right)\\[/latex]
77. [latex]\left(2,5\right)\\[/latex]
79. [latex]\left(-1,\text{1}\right)\\[/latex]
81. [latex]C\left(t\right)=\frac{8+2t}{300+20t}\\[/latex]
83. After about 6.12 hours.
85. [latex]A\left(x\right)=50{x}^{2}+\frac{800}{x}\\[/latex]. 2 by 2 by 5 feet.
87. [latex]A\left(x\right)=\pi {x}^{2}+\frac{100}{x}\\[/latex]. Radius = 2.52 meters.Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..