Section Exercises
1. How do we recognize when an equation is quadratic? 2. When we solve a quadratic equation, how many solutions should we always start out seeking? Explain why when solving a quadratic equation in the form [latex]a{x}^{2}+bx+c=0[/latex] we may graph the equation [latex]y=a{x}^{2}+bx+c[/latex] and have no zeroes (x-intercepts). 3. When we solve a quadratic equation by factoring, why do we move all terms to one side, having zero on the other side? 4. In the quadratic formula, what is the name of the expression under the radical sign [latex]{b}^{2}-4ac[/latex], and how does it determine the number of and nature of our solutions? 5. Describe two scenarios where using the square root property to solve a quadratic equation would be the most efficient method. For the following exercises, solve the quadratic equation by factoring. 6. [latex]{x}^{2}+4x - 21=0[/latex] 7. [latex]{x}^{2}-9x+18=0[/latex] 8. [latex]2{x}^{2}+9x - 5=0[/latex] 9. [latex]6{x}^{2}+17x+5=0[/latex] 10. [latex]4{x}^{2}-12x+8=0[/latex] 11. [latex]3{x}^{2}-75=0[/latex] 12. [latex]8{x}^{2}+6x - 9=0[/latex] 13. [latex]4{x}^{2}=9[/latex] 14. [latex]2{x}^{2}+14x=36[/latex] 15. [latex]5{x}^{2}=5x+30[/latex] 16. [latex]4{x}^{2}=5x[/latex] 17. [latex]7{x}^{2}+3x=0[/latex] 18. [latex]\frac{x}{3}-\frac{9}{x}=2[/latex] For the following exercises, solve the quadratic equation by using the square root property. 19. [latex]{x}^{2}=36[/latex] 20. [latex]{x}^{2}=49[/latex] 21. [latex]{\left(x - 1\right)}^{2}=25[/latex] 22. [latex]{\left(x - 3\right)}^{2}=7[/latex] 23. [latex]{\left(2x+1\right)}^{2}=9[/latex] 24. [latex]{\left(x - 5\right)}^{2}=4[/latex] For the following exercises, solve the quadratic equation by completing the square. Show each step. 25. [latex]{x}^{2}-9x - 22=0[/latex] 26. [latex]2{x}^{2}-8x - 5=0[/latex] 27. [latex]{x}^{2}-6x=13[/latex] 28. [latex]{x}^{2}+\frac{2}{3}x-\frac{1}{3}=0[/latex] 29. [latex]2+z=6{z}^{2}[/latex] 30. [latex]6{p}^{2}+7p - 20=0[/latex] 31. [latex]2{x}^{2}-3x - 1=0[/latex] For the following exercises, determine the discriminant, and then state how many solutions there are and the nature of the solutions. Do not solve. 32. [latex]2{x}^{2}-6x+7=0[/latex] 33. [latex]{x}^{2}+4x+7=0[/latex] 34. [latex]3{x}^{2}+5x - 8=0[/latex] 35. [latex]9{x}^{2}-30x+25=0[/latex] 36. [latex]2{x}^{2}-3x - 7=0[/latex] 37. [latex]6{x}^{2}-x - 2=0[/latex] For the following exercises, solve the quadratic equation by using the quadratic formula. If the solutions are not real, state No Real Solution. 38. [latex]2{x}^{2}+5x+3=0[/latex] 39. [latex]{x}^{2}+x=4[/latex] 40. [latex]2{x}^{2}-8x - 5=0[/latex] 41. [latex]3{x}^{2}-5x+1=0[/latex] 42. [latex]{x}^{2}+4x+2=0[/latex] 43. [latex]4+\frac{1}{x}-\frac{1}{{x}^{2}}=0[/latex] For the following exercises, enter the expressions into your graphing utility and find the zeroes to the equation (the x-intercepts) by using 2nd CALC 2:zero. Recall finding zeroes will ask left bound (move your cursor to the left of the zero,enter), then right bound (move your cursor to the right of the zero,enter), then guess (move your cursor between the bounds near the zero, enter). Round your answers to the nearest thousandth. 44. [latex]{\text{Y}}_{1}=4{x}^{2}+3x - 2[/latex] 45. [latex]{\text{Y}}_{1}=-3{x}^{2}+8x - 1[/latex] 46. [latex]{\text{Y}}_{1}=0.5{x}^{2}+x - 7[/latex] 47. To solve the quadratic equation [latex]{x}^{2}+5x - 7=4[/latex], we can graph these two equations
Licenses & Attributions
CC licensed content, Specific attribution
- College Algebra. Provided by: OpenStax Authored by: OpenStax College Algebra. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution.