Solutions
Solutions to Try Its
1. The graphs of [latex]f\left(x\right)\\[/latex] and [latex]g\left(x\right)\\[/latex] are shown below. The transformation is a horizontal shift. The function is shifted to the left by 2 units. 2. a)
b)
3. [latex]g\left(x\right)=-f\left(x\right)\\[/latex]
[latex]x\\[/latex] | -2 | 0 | 2 | 4 |
[latex]g\left(x\right)\\[/latex] | [latex]-5\\[/latex] | [latex]-10\\[/latex] | [latex]-15\\[/latex] | [latex]-20\\[/latex] |
[latex]h\left(x\right)=f\left(-x\right)\\[/latex]
[latex]x\\[/latex] | -2 | 0 | 2 | 4 |
[latex]h\left(x\right)\\[/latex] | 15 | 10 | 5 | unknown |
[latex]x\\[/latex] | 2 | 4 | 6 | 8 |
[latex]g\left(x\right)\\[/latex] | 9 | 12 | 15 | 0 |
Solution to Odd-Numbered Exercises
1. A horizontal shift results when a constant is added to or subtracted from the input. A vertical shifts results when a constant is added to or subtracted from the output. 3. A horizontal compression results when a constant greater than 1 is multiplied by the input. A vertical compression results when a constant between 0 and 1 is multiplied by the output. 5. For a function [latex]f[/latex], substitute [latex]\left(-x\right)\\[/latex] for [latex]\left(x\right)\\[/latex] in [latex]f\left(x\right)\\[/latex]. Simplify. If the resulting function is the same as the original function, [latex]f\left(-x\right)=f\left(x\right)\\[/latex], then the function is even. If the resulting function is the opposite of the original function, [latex]f\left(-x\right)=-f\left(x\right)\\[/latex], then the original function is odd. If the function is not the same or the opposite, then the function is neither odd nor even. 7. [latex]g\left(x\right)=|x - 1|-3\\[/latex] 9. [latex]g\left(x\right)=\frac{1}{{\left(x+4\right)}^{2}}+2\\[/latex] 11. The graph of [latex]f\left(x+43\right)\\[/latex] is a horizontal shift to the left 43 units of the graph of [latex]f\\[/latex]. 13. The graph of [latex]f\left(x - 4\right)\\[/latex] is a horizontal shift to the right 4 units of the graph of [latex]f\\[/latex]. 15. The graph of [latex]f\left(x\right)+8\\[/latex] is a vertical shift up 8 units of the graph of [latex]f\\[/latex]. 17. The graph of [latex]f\left(x\right)-7\\[/latex] is a vertical shift down 7 units of the graph of [latex]f\\[/latex]. 19. The graph of [latex]f\left(x+4\right)-1\\[/latex] is a horizontal shift to the left 4 units and a vertical shift down 1 unit of the graph of [latex]f\\[/latex]. 21. decreasing on [latex]\left(-\infty ,-3\right)\\[/latex] and increasing on [latex]\left(-3,\infty \right)\\[/latex] 23. decreasing on [latex]\left(0,\infty \right)\\[/latex] 25. 27. 29. 31. [latex]g\left(x\right)=f\left(x - 1\right),h\left(x\right)=f\left(x\right)+1\\[/latex] 33. [latex]f\left(x\right)=|x - 3|-2\\[/latex] 35. [latex]f\left(x\right)=\sqrt{x+3}-1\\[/latex] 37. [latex]f\left(x\right)={\left(x - 2\right)}^{2}\\[/latex] 39. [latex]f\left(x\right)=|x+3|-2\\[/latex] 41. [latex]f\left(x\right)=-\sqrt{x}\\[/latex] 43. [latex]f\left(x\right)=-{\left(x+1\right)}^{2}+2\\[/latex] 45. [latex]f\left(x\right)=\sqrt{-x}+1\\[/latex] 47. even 49. odd 51. even 53. The graph of [latex]g\\[/latex] is a vertical reflection (across the [latex]x\\[/latex] -axis) of the graph of [latex]f\\[/latex]. 55. The graph of [latex]g\\[/latex] is a vertical stretch by a factor of 4 of the graph of [latex]f\\[/latex]. 57. The graph of [latex]g\\[/latex] is a horizontal compression by a factor of [latex]\frac{1}{5}\\[/latex] of the graph of [latex]f\\[/latex]. 59. The graph of [latex]g\\[/latex] is a horizontal stretch by a factor of 3 of the graph of [latex]f\\[/latex]. 61. The graph of [latex]g\\[/latex] is a horizontal reflection across the [latex]y\\[/latex] -axis and a vertical stretch by a factor of 3 of the graph of [latex]f\\[/latex]. 63. [latex]g\left(x\right)=|-4x|\\[/latex] 65. [latex]g\left(x\right)=\frac{1}{3{\left(x+2\right)}^{2}}-3\\[/latex] 67. [latex]g\left(x\right)=\frac{1}{2}{\left(x - 5\right)}^{2}+1\\[/latex] 69. The graph of the function [latex]f\left(x\right)={x}^{2}\\[/latex] is shifted to the left 1 unit, stretched vertically by a factor of 4, and shifted down 5 units. 71. The graph of [latex]f\left(x\right)=|x|\\[/latex] is stretched vertically by a factor of 2, shifted horizontally 4 units to the right, reflected across the horizontal axis, and then shifted vertically 3 units up. 73. The graph of the function [latex]f\left(x\right)={x}^{3}\\[/latex] is compressed vertically by a factor of [latex]\frac{1}{2}\\[/latex]. 75. The graph of the function is stretched horizontally by a factor of 3 and then shifted vertically downward by 3 units. 77. The graph of [latex]f\left(x\right)=\sqrt{x}\\[/latex] is shifted right 4 units and then reflected across the vertical line [latex]x=4\\[/latex]. 79.
81.
Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..