Section Exercises
1. What is the fundamental difference in the algebraic representation of a polynomial function and a rational function? 2. What is the fundamental difference in the graphs of polynomial functions and rational functions? 3. If the graph of a rational function has a removable discontinuity, what must be true of the functional rule? 4. Can a graph of a rational function have no vertical asymptote? If so, how? 5. Can a graph of a rational function have no x-intercepts? If so, how? For the following exercises, find the domain of the rational functions. 6. [latex]f\left(x\right)=\frac{x - 1}{x+2}\\[/latex] 7. [latex]f\left(x\right)=\frac{x+1}{{x}^{2}-1}\\[/latex] 8. [latex]f\left(x\right)=\frac{{x}^{2}+4}{{x}^{2}-2x - 8}\\[/latex] 9. [latex]f\left(x\right)=\frac{{x}^{2}+4x - 3}{{x}^{4}-5{x}^{2}+4}\\[/latex] For the following exercises, find the domain, vertical asymptotes, and horizontal asymptotes of the functions. 10. [latex]f\left(x\right)=\frac{4}{x - 1}\\[/latex] 11. [latex]f\left(x\right)=\frac{2}{5x+2}\\[/latex] 12. [latex]f\left(x\right)=\frac{x}{{x}^{2}-9}\\[/latex] 13. [latex]f\left(x\right)=\frac{x}{{x}^{2}+5x - 36}\\[/latex] 14. [latex]f\left(x\right)=\frac{3+x}{{x}^{3}-27}\\[/latex] 15. [latex]f\left(x\right)=\frac{3x - 4}{{x}^{3}-16x}\\[/latex] 16. [latex]f\left(x\right)=\frac{{x}^{2}-1}{{x}^{3}+9{x}^{2}+14x}\\[/latex] 17. [latex]f\left(x\right)=\frac{x+5}{{x}^{2}-25}\\[/latex] 18. [latex]f\left(x\right)=\frac{x - 4}{x - 6}\\[/latex] 19. [latex]f\left(x\right)=\frac{4 - 2x}{3x - 1}\\[/latex] For the following exercises, find the x- and y-intercepts for the functions. 20. [latex]f\left(x\right)=\frac{x+5}{{x}^{2}+4}\\[/latex] 21. [latex]f\left(x\right)=\frac{x}{{x}^{2}-x}\\[/latex] 22. [latex]f\left(x\right)=\frac{{x}^{2}+8x+7}{{x}^{2}+11x+30}\\[/latex] 23. [latex]f\left(x\right)=\frac{{x}^{2}+x+6}{{x}^{2}-10x+24}\\[/latex] 24. [latex]f\left(x\right)=\frac{94 - 2{x}^{2}}{3{x}^{2}-12}\\[/latex] For the following exercises, describe the local and end behavior of the functions. 25. [latex]f\left(x\right)=\frac{x}{2x+1}\\[/latex] 26. [latex]f\left(x\right)=\frac{2x}{x - 6}\\[/latex] 27. [latex]f\left(x\right)=\frac{-2x}{x - 6}\\[/latex] 28. [latex]f\left(x\right)=\frac{{x}^{2}-4x+3}{{x}^{2}-4x - 5}\\[/latex] 29. [latex]f\left(x\right)=\frac{2{x}^{2}-32}{6{x}^{2}+13x - 5}\\[/latex] For the following exercises, find the slant asymptote of the functions. 30. [latex]f\left(x\right)=\frac{24{x}^{2}+6x}{2x+1}\\[/latex] 31. [latex]f\left(x\right)=\frac{4{x}^{2}-10}{2x - 4}\\[/latex] 32. [latex]f\left(x\right)=\frac{81{x}^{2}-18}{3x - 2}\\[/latex] 33. [latex]f\left(x\right)=\frac{6{x}^{3}-5x}{3{x}^{2}+4}\\[/latex] 34. [latex]f\left(x\right)=\frac{{x}^{2}+5x+4}{x - 1}\\[/latex] For the following exercises, use the given transformation to graph the function. Note the vertical and horizontal asymptotes. 35. The reciprocal function shifted up two units. 36. The reciprocal function shifted down one unit and left three units. 37. The reciprocal squared function shifted to the right 2 units. 38. The reciprocal squared function shifted down 2 units and right 1 unit. For the following exercises, find the horizontal intercepts, the vertical intercept, the vertical asymptotes, and the horizontal or slant asymptote of the functions. Use that information to sketch a graph. 39. [latex]p\left(x\right)=\frac{2x - 3}{x+4}\\[/latex] 40. [latex]q\left(x\right)=\frac{x - 5}{3x - 1}\\[/latex] 41. [latex]s\left(x\right)=\frac{4}{{\left(x - 2\right)}^{2}}\\[/latex] 42. [latex]r\left(x\right)=\frac{5}{{\left(x+1\right)}^{2}}\\[/latex] 43. [latex]f\left(x\right)=\frac{3{x}^{2}-14x - 5}{3{x}^{2}+8x - 16}\\[/latex] 44. [latex]g\left(x\right)=\frac{2{x}^{2}+7x - 15}{3{x}^{2}-14+15}\\[/latex] 45. [latex]a\left(x\right)=\frac{{x}^{2}+2x - 3}{{x}^{2}-1}\\[/latex] 46. [latex]b\left(x\right)=\frac{{x}^{2}-x - 6}{{x}^{2}-4}\\[/latex] 47. [latex]h\left(x\right)=\frac{2{x}^{2}+ x - 1}{x - 4}\\[/latex] 48. [latex]k\left(x\right)=\frac{2{x}^{2}-3x - 20}{x - 5}\\[/latex] 49. [latex]w\left(x\right)=\frac{\left(x - 1\right)\left(x+3\right)\left(x - 5\right)}{{\left(x+2\right)}^{2}\left(x - 4\right)}\\[/latex] 50. [latex]z\left(x\right)=\frac{{\left(x+2\right)}^{2}\left(x - 5\right)}{\left(x - 3\right)\left(x+1\right)\left(x+4\right)}\\[/latex] For the following exercises, write an equation for a rational function with the given characteristics. 51. Vertical asymptotes at x = 5 and x = –5, x-intercepts at [latex]\left(2,0\right)\\[/latex] and [latex]\left(-1,0\right)\\[/latex], y-intercept at [latex]\left(0,4\right)\\[/latex] 52. Vertical asymptotes at [latex]x=-4\\[/latex] and [latex]x=-1\\[/latex], x-intercepts at [latex]\left(1,0\right)\\[/latex] and [latex]\left(5,0\right)\\[/latex], y-intercept at [latex]\left(0,7\right)\\[/latex] 53. Vertical asymptotes at [latex]x=-4\\[/latex] and [latex]x=-5\\[/latex], x-intercepts at [latex]\left(4,0\right)\\[/latex] and [latex]\left(-6,0\right)\\[/latex], Horizontal asymptote at [latex]y=7\\[/latex] 54. Vertical asymptotes at [latex]x=-3\\[/latex] and [latex]x=6\\[/latex], x-intercepts at [latex]\left(-2,0\right)\\[/latex] and [latex]\left(1,0\right)\\[/latex], Horizontal asymptote at [latex]y=-2\\[/latex] 55. Vertical asymptote at [latex]x=-1\\[/latex], Double zero at [latex]x=2\\[/latex], y-intercept at [latex]\left(0,2\right)\\[/latex] 56. Vertical asymptote at [latex]x=3\\[/latex], Double zero at [latex]x=1\\[/latex], y-intercept at [latex]\left(0,4\right)\\[/latex] For the following exercises, use the graphs to write an equation for the function. 57.







Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..