Section Exercises
1. The inverse of every logarithmic function is an exponential function and vice-versa. What does this tell us about the relationship between the coordinates of the points on the graphs of each? 2. What type(s) of translation(s), if any, affect the range of a logarithmic function? 3. What type(s) of translation(s), if any, affect the domain of a logarithmic function? 4. Consider the general logarithmic function [latex]f\left(x\right)={\mathrm{log}}_{b}\left(x\right)\\[/latex]. Why can’t x be zero? 5. Does the graph of a general logarithmic function have a horizontal asymptote? Explain. For the following exercises, state the domain and range of the function. 6. [latex]f\left(x\right)={\mathrm{log}}_{3}\left(x+4\right)\\[/latex] 7. [latex]h\left(x\right)=\mathrm{ln}\left(\frac{1}{2}-x\right)\\[/latex] 8. [latex]g\left(x\right)={\mathrm{log}}_{5}\left(2x+9\right)-2\\[/latex] 9. [latex]h\left(x\right)=\mathrm{ln}\left(4x+17\right)-5\\[/latex] 10. [latex]f\left(x\right)={\mathrm{log}}_{2}\left(12 - 3x\right)-3\\[/latex] For the following exercises, state the domain and the vertical asymptote of the function. 11. [latex]f\left(x\right)={\mathrm{log}}_{b}\left(x - 5\right)\\[/latex] 12. [latex]g\left(x\right)=\mathrm{ln}\left(3-x\right)\\[/latex] 13. [latex]f\left(x\right)=\mathrm{log}\left(3x+1\right)\\[/latex] 14. [latex]f\left(x\right)=3\mathrm{log}\left(-x\right)+2\\[/latex] 15. [latex]g\left(x\right)=-\mathrm{ln}\left(3x+9\right)-7\\[/latex] For the following exercises, state the domain, vertical asymptote, and end behavior of the function. 16. [latex]f\left(x\right)=\mathrm{ln}\left(2-x\right)\\[/latex] 17. [latex]f\left(x\right)=\mathrm{log}\left(x-\frac{3}{7}\right)\\[/latex] 18. [latex]h\left(x\right)=-\mathrm{log}\left(3x - 4\right)+3\\[/latex] 19. [latex]g\left(x\right)=\mathrm{ln}\left(2x+6\right)-5\\[/latex] 20. [latex]f\left(x\right)={\mathrm{log}}_{3}\left(15 - 5x\right)+6\\[/latex] For the following exercises, state the domain, range, and x- and y-intercepts, if they exist. If they do not exist, write DNE. 21. [latex]h\left(x\right)={\mathrm{log}}_{4}\left(x - 1\right)+1\\[/latex] 22. [latex]f\left(x\right)=\mathrm{log}\left(5x+10\right)+3\\[/latex] 23. [latex]g\left(x\right)=\mathrm{ln}\left(-x\right)-2\\[/latex] 24. [latex]f\left(x\right)={\mathrm{log}}_{2}\left(x+2\right)-5\\[/latex] 25. [latex]h\left(x\right)=3\mathrm{ln}\left(x\right)-9\\[/latex] For the following exercises, match each function in the graph below with the letter corresponding to its graph.






Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..