Read: Factor by Grouping
Learning Objectives
- Factor a trinomial with leading coefficient other than [latex]1[/latex] using grouping
Factors of [latex]2\cdot3=6[/latex] | Sum of Factors |
---|---|
[latex]1,6[/latex] | [latex]7[/latex] |
[latex]-1,-6[/latex] | [latex]-7[/latex] |
[latex]2,3[/latex] | [latex]5[/latex] |
[latex]-2,-3[/latex] | [latex]-5[/latex] |
[latex]2{x}^{2}+5x+3=2x^2+2x+3x+3[/latex]
Now we can group the polynomial into two binomials.
[latex]2x^2+2x+3x+3=(2x^2+2x)+(3x+3)[/latex]
Identify the GCF of each binomial.
[latex]2x[/latex] is the GCF of [latex](2x^2+2x)[/latex] and [latex]3[/latex] is the GCF of [latex](3x+3)[/latex], use this to rewrite the polynomial:
[latex](2x^2+2x)+(3x+3)=2x(x+1)+3(x+1)[/latex]
Note how we leave the signs in the binomials and the addition that joins them, be careful with signs when you factor out the GCF. The GCF of our new polynomial is [latex](x+1)[/latex], we factor this out as well:
[latex]2x(x+1)+3(x+1)=(x+1)(2x+3)[/latex].
Sometimes it helps visually to write the polynomial this way [latex](x+1)2x+(x+1)3[/latex] before you factor out the GCF. This is purely a matter of preference, multiplication is commutative, so order doesn't matter.
A General Note: Factor by Grouping
To factor a trinomial in the form [latex]a{x}^{2}+bx+c[/latex] by grouping, we find two numbers with a product of [latex]ac[/latex] and a sum of [latex]b[/latex]. We use these numbers to divide the [latex]x[/latex] term into the sum of two terms and factor each portion of the expression separately, then factor out the GCF of the entire expression.
Example
Factor [latex]5{x}^{2}+7x - 6[/latex] by grouping.Answer: We have a trinomial with [latex]a=5,b=7[/latex], and [latex]c=-6[/latex]. First, determine [latex]ac=-30[/latex]. We need to find two numbers with a product of [latex]-30[/latex] and a sum of [latex]7[/latex]. In the table, we list factors until we find a pair with the desired sum.
Factors of [latex]-30[/latex] | Sum of Factors |
---|---|
[latex]1,-30[/latex] | [latex]-29[/latex] |
[latex]-1,30[/latex] | [latex]29[/latex] |
[latex]2,-15[/latex] | [latex]-13[/latex] |
[latex]-2,15[/latex] | [latex]13[/latex] |
[latex]3,-10[/latex] | [latex]-7[/latex] |
[latex]-3,10[/latex] | [latex]7[/latex] |
Analysis of the Solution
We can check our work by multiplying. Use FOIL to confirm that [latex]\left(5x - 3\right)\left(x+2\right)=5{x}^{2}+7x - 6[/latex].Given a trinomial in the form [latex]a{x}^{2}+bx+c[/latex], factor by grouping.
- List factors of [latex]ac[/latex].
- Find [latex]p[/latex] and [latex]q[/latex], a pair of factors of [latex]ac[/latex] with a sum of [latex]b[/latex].
- Rewrite the original expression as [latex]a{x}^{2}+px+qx+c[/latex].
- Pull out the GCF of [latex]a{x}^{2}+px[/latex].
- Pull out the GCF of [latex]qx+c[/latex].
- Factor out the GCF of the expression.
We will show two more examples so you can become acquainted with the variety of possible outcomes for factoring this type of trinomial.
Example
Factor [latex]2{x}^{2}+9x+9[/latex].Answer: Find two numbers p, q such that [latex]p\cdot{q}=18[/latex], and [latex]p + q = 9[/latex]. [latex]9[/latex] and [latex]18[/latex] are both positive, so we will only consider positive factors.
Factors of [latex]2\cdot9=18[/latex] | Sum of Factors |
---|---|
[latex]1, 18[/latex] | [latex]19[/latex] |
[latex]3,6[/latex] | [latex]9[/latex] |
[latex]2x^2+3x+6x+9=(2x^2+3x)+(6x+9)[/latex]
Factor out the GCF of each binomial, and write as a product of two binomials:[latex](2x^2+3x)+(6x+9)=x(2x+3)+3(2x+3)=(x+3)(2x+3)[/latex]
[latex-display]2{x}^{2}+9x+9=(x+3)(2x+3)[/latex-display]Example
Factor [latex]6{x}^{2}+x - 1[/latex].Answer:
Factors of [latex]6\cdot-1=-6[/latex] | Sum of Factors |
---|---|
[latex]-1,6[/latex] | [latex]5[/latex] |
[latex]1,-6[/latex] | [latex]-5[/latex] |
[latex]-2,3[/latex] | [latex]1[/latex] |
[latex]6{x}^{2}+x - 1=6x^2-2x+3x-1[/latex]
Factor out the GCF of each binomial, and write as a product of two binomials:[latex](6x^2-2x)+(3x-1)=2x(3x-1)+1(3x-1)=(2x+1)(3x-1)[/latex]
[latex-display]6{x}^{2}+x - 1=(2x+1)(3x-1)[/latex-display]Example
Factor [latex]7x^{2}-16x–5[/latex].Answer: Find [latex]p, q[/latex] such that [latex]p\cdot{q}=-35\text{ and }p+q=-16[/latex]
Factors of [latex]7\cdot{-5}=-35[/latex] | Sum of Factors |
---|---|
[latex]-1, 35[/latex] | [latex]34[/latex] |
[latex]1, -35[/latex] | [latex]-34[/latex] |
[latex]-5, 7[/latex] | [latex]2[/latex] |
[latex]-7,5[/latex] | [latex]-2[/latex] |
Answer
Cannot be factored. None of the factors add up to [latex]-16[/latex]Licenses & Attributions
CC licensed content, Original
- Factor a Trinomial in the Form ax^2+bx+c Using the Grouping Technique. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Factor a Trinomial in the Form -ax^2+bx+c Using the Grouping Technique. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
CC licensed content, Shared previously
- Unit 12: Factoring, from Developmental Math: An Open Program. Provided by: Monterey Institute of Technology and Education Located at: https://www.nroc.org/. License: CC BY: Attribution.