Determine when two radicals have the same index and radicand
Recognize when a radical expression can be simplified either before or after addition or subtraction
There are two keys to combining radicals by addition or subtraction: look at the index, and look at the radicand. If these are the same, then addition and subtraction are possible. If not, then you cannot combine the two radicals. In the graphic below, the index of the expression 123xy is 3 and the radicand is xy.
Making sense of a string of radicals may be difficult. One helpful tip is to think of radicals as variables, and treat them the same way. When you add and subtract variables, you look for like terms, which is the same thing you will do when you add and subtract radicals.
In this first example, both radicals have the same radicand and index.
Example
Add. 311+711
Answer: The two radicals are the same, . This means you can combine them as you would combine the terms 3a+7a.
311 + 711
Answer
311+711=1011
This next example contains more addends, or terms that are being added together. Notice how you can combine like terms (radicals that have the same root and index) but you cannot combine unlike terms.
Example
Add. 52+3+43+22
Answer: Rearrange terms so that like radicals are next to each other. Then add.
52+22+3+43
Answer
52+3+43+22=72+53
Notice that the expression in the previous example is simplified even though it has two terms: 72 and 53. It would be a mistake to try to combine them further! (Some people make the mistake that 72+53=125. This is incorrect because2 and 3 are not like radicals so they cannot be added.)
Example
Add. 3x+123xy+x
Answer: Rearrange terms so that like radicals are next to each other. Then add.
3x+x+123xy
Answer
3x+123xy+x=4x+123xy
In the following video we show more examples of how to identify and add like radicals.
https://youtu.be/ihcZhgm3yBg
Sometimes you may need to add and simplify the radical. If the radicals are different, try simplifying first—you may end up being able to combine the radicals at the end, as shown in these next two examples.
Example
Add and simplify. 2340+3135
Answer: Simplify each radical by identifying perfect cubes.
The following video shows more examples of adding radicals that require simplification.
https://youtu.be/S3fGUeALy7E
Subtract Radicals
Subtraction of radicals follows the same set of rules and approaches as addition—the radicands and the indices must be the same for two (or more) radicals to be subtracted. In the three examples that follow, subtraction has been rewritten as addition of the opposite.
Example
Subtract. 513−313
Answer: The radicands and indices are the same, so these two radicals can be combined.
513−313
Answer
513−313=213
Example
Subtract. 435a−33a−235a
Answer: Two of the radicals have the same index and radicand, so they can be combined. Rewrite the expression so that like radicals are next to each other.
435a+(−33a)+(−235a)435a+(−235a)+(−33a)
Combine. Although the indices of 235a and −33a are the same, the radicands are not—so they cannot be combined.
235a+(−33a)
Answer
435a−33a−235a=235a−33a
In the following video we show more examples of subtracting radical expressions when no simplifying is required.
https://youtu.be/77TR9HsPZ6M
Example
Subtract and simplify. 54a5b−a416ab, where a≥0 and b≥0
Answer: Simplify each radical by identifying and pulling out powers of 4.
In our last video we show more examples of subtracting radicals that require simplifying.
https://youtu.be/6MogonN1PRQ
Summary
Combining radicals is possible when the index and the radicand of two or more radicals are the same. Radicals with the same index and radicand are known as like radicals. It is often helpful to treat radicals just as you would treat variables: like radicals can be added and subtracted in the same way that like variables can be added and subtracted. Sometimes, you will need to simplify a radical expression before it is possible to add or subtract like terms.
Licenses & Attributions
CC licensed content, Original
Adding Radicals (Basic With No Simplifying).Authored by: James Sousa (Mathispower4u.com) for Lumen Learning.License: CC BY: Attribution.
Adding Radicals That Requires Simplifying.Authored by: James Sousa (Mathispower4u.com) for Lumen Learning.License: CC BY: Attribution.
Subtracting Radicals (Basic With No Simplifying).Authored by: James Sousa (Mathispower4u.com) for Lumen Learning.License: CC BY: Attribution.
Subtracting Radicals That Requires Simplifying.Authored by: James Sousa (Mathispower4u.com) for Lumen Learning.License: CC BY: Attribution.