פתרונות
מחשבון אינטגרליםמחשבון נגזרתמחשבון אלגברהמחשבון מטריצותיותר...
גרפים
גרף קוויםגרף אקספוננציאליגרף ריבועיגרף סינוסיותר...
מחשבונים
מחשבון BMIמחשבון ריבית דריביתמחשבון אחוזיםמחשבון האצהיותר...
גאומטריה
מחשבון משפט פיתגורסמחשבון שטח מעגלמחשבון משולש שווה שוקייםמחשבון משולשיםיותר...
AI Chat
כלים
מחברתקבוצותשליפיםדפי עבודהתרגולאימות
he
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
פּוֹפּוּלָרִי טריגונומטריה >

cos^4(x)=cos^{23}(x)

  • טרום אלגברה
  • אלגברה
  • טרום חשבון אינפיטיסמלי
  • חשבון אינפיטסימלי
  • פונקציות
  • אלגברה לינארית
  • טריגונומטריה
  • סטטיסטיקה

פתרון

cos4(x)=cos23(x)

פתרון

x=2π​+2πn,x=23π​+2πn,x=2πn
+1
מעלות
x=90∘+360∘n,x=270∘+360∘n,x=0∘+360∘n
צעדי פתרון
cos4(x)=cos23(x)
בעזרת שיטת ההצבה
cos4(x)=cos23(x)
cos(x)=u:נניח שu4=u23
u4=u23:u=0,u=1
u4=u23
הפוך את האגפיםu23=u4
לצד שמאל u4העבר
u23=u4
משני האגפים u4החסרu23−u4=u4−u4
פשטu23−u4=0
u23−u4=0
u23−u4פרק לגורמים את:u4(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
u23−u4
u4הוצא את הגורם המשותף:u4(u19−1)
u23−u4
ab+c=abac :הפעל את חוק החזקותu23=u19u4=u19u4−u4
u4הוצא את הגורם המשותף=u4(u19−1)
=u4(u19−1)
u19−1פרק לגורמים את:(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
u19−1
119בתור 1כתוב מחדש את=u19−119
xn−yn=(x−y)(xn−1+xn−2y+⋯+xyn−2yn−1)הפעל את חוק פירוק לגורמיםu19−119=(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)=(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
=u4(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
u4(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)=0
פתור על ידי השוואת הגורמים לאפסu=0oru−1=0oru18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0
u−1=0פתור את:u=1
u−1=0
לצד ימין 1העבר
u−1=0
לשני האגפים 1הוסףu−1+1=0+1
פשטu=1
u=1
u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0פתור את:u∈Rאין פתרון ל
u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0
בשיטת ניטון-רפסון u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0מצא פתרון אחד ל:u∈Rאין פתרון ל
u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0
הגדרת קירוב ניוטון-רפזון
f(u)=u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1
f′(u)מצא את:18u17+17u16+16u15+15u14+14u13+13u12+12u11+11u10+10u9+9u8+8u7+7u6+6u5+5u4+4u3+3u2+2u+1
dud​(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
(f±g)′=f′±g′ :השתמש בחוק החיבור=dud​(u18)+dud​(u17)+dud​(u16)+dud​(u15)+dud​(u14)+dud​(u13)+dud​(u12)+dud​(u11)+dud​(u10)+dud​(u9)+dud​(u8)+dud​(u7)+dud​(u6)+dud​(u5)+dud​(u4)+dud​(u3)+dud​(u2)+dudu​+dud​(1)
dud​(u18)=18u17
dud​(u18)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=18u18−1
פשט=18u17
dud​(u17)=17u16
dud​(u17)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=17u17−1
פשט=17u16
dud​(u16)=16u15
dud​(u16)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=16u16−1
פשט=16u15
dud​(u15)=15u14
dud​(u15)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=15u15−1
פשט=15u14
dud​(u14)=14u13
dud​(u14)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=14u14−1
פשט=14u13
dud​(u13)=13u12
dud​(u13)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=13u13−1
פשט=13u12
dud​(u12)=12u11
dud​(u12)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=12u12−1
פשט=12u11
dud​(u11)=11u10
dud​(u11)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=11u11−1
פשט=11u10
dud​(u10)=10u9
dud​(u10)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=10u10−1
פשט=10u9
dud​(u9)=9u8
dud​(u9)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=9u9−1
פשט=9u8
dud​(u8)=8u7
dud​(u8)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=8u8−1
פשט=8u7
dud​(u7)=7u6
dud​(u7)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=7u7−1
פשט=7u6
dud​(u6)=6u5
dud​(u6)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=6u6−1
פשט=6u5
dud​(u5)=5u4
dud​(u5)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=5u5−1
פשט=5u4
dud​(u4)=4u3
dud​(u4)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=4u4−1
פשט=4u3
dud​(u3)=3u2
dud​(u3)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=3u3−1
פשט=3u2
dud​(u2)=2u
dud​(u2)
dxd​(xa)=a⋅xa−1 :השתמש בחוק החזקה=2u2−1
פשט=2u
dudu​=1
dudu​
dudu​=1 :השתמש בנגזרת הבסיסית=1
dud​(1)=0
dud​(1)
dxd​(a)=0 :נגזרת של קבוע=0
=18u17+17u16+16u15+15u14+14u13+13u12+12u11+11u10+10u9+9u8+8u7+7u6+6u5+5u4+4u3+3u2+2u+1+0
פשט=18u17+17u16+16u15+15u14+14u13+13u12+12u11+11u10+10u9+9u8+8u7+7u6+6u5+5u4+4u3+3u2+2u+1
u0​=−1החלף Δun+1​<0.000001עד ש un+1​חשב
u1​=−0.88888…:Δu1​=0.11111…
f(u0​)=(−1)18+(−1)17+(−1)16+(−1)15+(−1)14+(−1)13+(−1)12+(−1)11+(−1)10+(−1)9+(−1)8+(−1)7+(−1)6+(−1)5+(−1)4+(−1)3+(−1)2+(−1)+1=1f′(u0​)=18(−1)17+17(−1)16+16(−1)15+15(−1)14+14(−1)13+13(−1)12+12(−1)11+11(−1)10+10(−1)9+9(−1)8+8(−1)7+7(−1)6+6(−1)5+5(−1)4+4(−1)3+3(−1)2+2(−1)+1=−9u1​=−0.88888…
Δu1​=∣−0.88888…−(−1)∣=0.11111…Δu1​=0.11111…
u2​=−0.23578…:Δu2​=0.65310…
f(u1​)=(−0.88888…)18+(−0.88888…)17+(−0.88888…)16+(−0.88888…)15+(−0.88888…)14+(−0.88888…)13+(−0.88888…)12+(−0.88888…)11+(−0.88888…)10+(−0.88888…)9+(−0.88888…)8+(−0.88888…)7+(−0.88888…)6+(−0.88888…)5+(−0.88888…)4+(−0.88888…)3+(−0.88888…)2+(−0.88888…)+1=0.58589…f′(u1​)=18(−0.88888…)17+17(−0.88888…)16+16(−0.88888…)15+15(−0.88888…)14+14(−0.88888…)13+13(−0.88888…)12+12(−0.88888…)11+11(−0.88888…)10+10(−0.88888…)9+9(−0.88888…)8+8(−0.88888…)7+7(−0.88888…)6+6(−0.88888…)5+5(−0.88888…)4+4(−0.88888…)3+3(−0.88888…)2+2(−0.88888…)+1=−0.89708…u2​=−0.23578…
Δu2​=∣−0.23578…−(−0.88888…)∣=0.65310…Δu2​=0.65310…
u3​=−1.47156…:Δu3​=1.23578…
f(u2​)=(−0.23578…)18+(−0.23578…)17+(−0.23578…)16+(−0.23578…)15+(−0.23578…)14+(−0.23578…)13+(−0.23578…)12+(−0.23578…)11+(−0.23578…)10+(−0.23578…)9+(−0.23578…)8+(−0.23578…)7+(−0.23578…)6+(−0.23578…)5+(−0.23578…)4+(−0.23578…)3+(−0.23578…)2+(−0.23578…)+1=0.80920…f′(u2​)=18(−0.23578…)17+17(−0.23578…)16+16(−0.23578…)15+15(−0.23578…)14+14(−0.23578…)13+13(−0.23578…)12+12(−0.23578…)11+11(−0.23578…)10+10(−0.23578…)9+9(−0.23578…)8+8(−0.23578…)7+7(−0.23578…)6+6(−0.23578…)5+5(−0.23578…)4+4(−0.23578…)3+3(−0.23578…)2+2(−0.23578…)+1=0.65481…u3​=−1.47156…
Δu3​=∣−1.47156…−(−0.23578…)∣=1.23578…Δu3​=1.23578…
u4​=−1.39155…:Δu4​=0.08000…
f(u3​)=(−1.47156…)18+(−1.47156…)17+(−1.47156…)16+(−1.47156…)15+(−1.47156…)14+(−1.47156…)13+(−1.47156…)12+(−1.47156…)11+(−1.47156…)10+(−1.47156…)9+(−1.47156…)8+(−1.47156…)7+(−1.47156…)6+(−1.47156…)5+(−1.47156…)4+(−1.47156…)3+(−1.47156…)2+(−1.47156…)+1=623.90302…f′(u3​)=18(−1.47156…)17+17(−1.47156…)16+16(−1.47156…)15+15(−1.47156…)14+14(−1.47156…)13+13(−1.47156…)12+12(−1.47156…)11+11(−1.47156…)10+10(−1.47156…)9+9(−1.47156…)8+8(−1.47156…)7+7(−1.47156…)6+6(−1.47156…)5+5(−1.47156…)4+4(−1.47156…)3+3(−1.47156…)2+2(−1.47156…)+1=−7797.82245…u4​=−1.39155…
Δu4​=∣−1.39155…−(−1.47156…)∣=0.08000…Δu4​=0.08000…
u5​=−1.31585…:Δu5​=0.07569…
f(u4​)=(−1.39155…)18+(−1.39155…)17+(−1.39155…)16+(−1.39155…)15+(−1.39155…)14+(−1.39155…)13+(−1.39155…)12+(−1.39155…)11+(−1.39155…)10+(−1.39155…)9+(−1.39155…)8+(−1.39155…)7+(−1.39155…)6+(−1.39155…)5+(−1.39155…)4+(−1.39155…)3+(−1.39155…)2+(−1.39155…)+1=223.17190…f′(u4​)=18(−1.39155…)17+17(−1.39155…)16+16(−1.39155…)15+15(−1.39155…)14+14(−1.39155…)13+13(−1.39155…)12+12(−1.39155…)11+11(−1.39155…)10+10(−1.39155…)9+9(−1.39155…)8+8(−1.39155…)7+7(−1.39155…)6+6(−1.39155…)5+5(−1.39155…)4+4(−1.39155…)3+3(−1.39155…)2+2(−1.39155…)+1=−2948.11712…u5​=−1.31585…
Δu5​=∣−1.31585…−(−1.39155…)∣=0.07569…Δu5​=0.07569…
u6​=−1.24406…:Δu6​=0.07179…
f(u5​)=(−1.31585…)18+(−1.31585…)17+(−1.31585…)16+(−1.31585…)15+(−1.31585…)14+(−1.31585…)13+(−1.31585…)12+(−1.31585…)11+(−1.31585…)10+(−1.31585…)9+(−1.31585…)8+(−1.31585…)7+(−1.31585…)6+(−1.31585…)5+(−1.31585…)4+(−1.31585…)3+(−1.31585…)2+(−1.31585…)+1=79.90865…f′(u5​)=18(−1.31585…)17+17(−1.31585…)16+16(−1.31585…)15+15(−1.31585…)14+14(−1.31585…)13+13(−1.31585…)12+12(−1.31585…)11+11(−1.31585…)10+10(−1.31585…)9+9(−1.31585…)8+8(−1.31585…)7+7(−1.31585…)6+6(−1.31585…)5+5(−1.31585…)4+4(−1.31585…)3+3(−1.31585…)2+2(−1.31585…)+1=−1113.08361…u6​=−1.24406…
Δu6​=∣−1.24406…−(−1.31585…)∣=0.07179…Δu6​=0.07179…
u7​=−1.17552…:Δu7​=0.06854…
f(u6​)=(−1.24406…)18+(−1.24406…)17+(−1.24406…)16+(−1.24406…)15+(−1.24406…)14+(−1.24406…)13+(−1.24406…)12+(−1.24406…)11+(−1.24406…)10+(−1.24406…)9+(−1.24406…)8+(−1.24406…)7+(−1.24406…)6+(−1.24406…)5+(−1.24406…)4+(−1.24406…)3+(−1.24406…)2+(−1.24406…)+1=28.69312…f′(u6​)=18(−1.24406…)17+17(−1.24406…)16+16(−1.24406…)15+15(−1.24406…)14+14(−1.24406…)13+13(−1.24406…)12+12(−1.24406…)11+11(−1.24406…)10+10(−1.24406…)9+9(−1.24406…)8+8(−1.24406…)7+7(−1.24406…)6+6(−1.24406…)5+5(−1.24406…)4+4(−1.24406…)3+3(−1.24406…)2+2(−1.24406…)+1=−418.62427…u7​=−1.17552…
Δu7​=∣−1.17552…−(−1.24406…)∣=0.06854…Δu7​=0.06854…
u8​=−1.10880…:Δu8​=0.06671…
f(u7​)=(−1.17552…)18+(−1.17552…)17+(−1.17552…)16+(−1.17552…)15+(−1.17552…)14+(−1.17552…)13+(−1.17552…)12+(−1.17552…)11+(−1.17552…)10+(−1.17552…)9+(−1.17552…)8+(−1.17552…)7+(−1.17552…)6+(−1.17552…)5+(−1.17552…)4+(−1.17552…)3+(−1.17552…)2+(−1.17552…)+1=10.38689…f′(u7​)=18(−1.17552…)17+17(−1.17552…)16+16(−1.17552…)15+15(−1.17552…)14+14(−1.17552…)13+13(−1.17552…)12+12(−1.17552…)11+11(−1.17552…)10+10(−1.17552…)9+9(−1.17552…)8+8(−1.17552…)7+7(−1.17552…)6+6(−1.17552…)5+5(−1.17552…)4+4(−1.17552…)3+3(−1.17552…)2+2(−1.17552…)+1=−155.67966…u8​=−1.10880…
Δu8​=∣−1.10880…−(−1.17552…)∣=0.06671…Δu8​=0.06671…
u9​=−1.04007…:Δu9​=0.06872…
f(u8​)=(−1.10880…)18+(−1.10880…)17+(−1.10880…)16+(−1.10880…)15+(−1.10880…)14+(−1.10880…)13+(−1.10880…)12+(−1.10880…)11+(−1.10880…)10+(−1.10880…)9+(−1.10880…)8+(−1.10880…)7+(−1.10880…)6+(−1.10880…)5+(−1.10880…)4+(−1.10880…)3+(−1.10880…)2+(−1.10880…)+1=3.84863…f′(u8​)=18(−1.10880…)17+17(−1.10880…)16+16(−1.10880…)15+15(−1.10880…)14+14(−1.10880…)13+13(−1.10880…)12+12(−1.10880…)11+11(−1.10880…)10+10(−1.10880…)9+9(−1.10880…)8+8(−1.10880…)7+7(−1.10880…)6+6(−1.10880…)5+5(−1.10880…)4+4(−1.10880…)3+3(−1.10880…)2+2(−1.10880…)+1=−55.99781…u9​=−1.04007…
Δu9​=∣−1.04007…−(−1.10880…)∣=0.06872…Δu9​=0.06872…
u10​=−0.95606…:Δu10​=0.08401…
f(u9​)=(−1.04007…)18+(−1.04007…)17+(−1.04007…)16+(−1.04007…)15+(−1.04007…)14+(−1.04007…)13+(−1.04007…)12+(−1.04007…)11+(−1.04007…)10+(−1.04007…)9+(−1.04007…)8+(−1.04007…)7+(−1.04007…)6+(−1.04007…)5+(−1.04007…)4+(−1.04007…)3+(−1.04007…)2+(−1.04007…)+1=1.52432…f′(u9​)=18(−1.04007…)17+17(−1.04007…)16+16(−1.04007…)15+15(−1.04007…)14+14(−1.04007…)13+13(−1.04007…)12+12(−1.04007…)11+11(−1.04007…)10+10(−1.04007…)9+9(−1.04007…)8+8(−1.04007…)7+7(−1.04007…)6+6(−1.04007…)5+5(−1.04007…)4+4(−1.04007…)3+3(−1.04007…)2+2(−1.04007…)+1=−18.14456…u10​=−0.95606…
Δu10​=∣−0.95606…−(−1.04007…)∣=0.08401…Δu10​=0.08401…
לא יכול למצוא פתרון
הפתרון למשוואה הואu∈Rאיןפתרוןל
The solutions areu=0,u=1
u=cos(x)החלף בחזרהcos(x)=0,cos(x)=1
cos(x)=0,cos(x)=1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
cos(x)=0:פתרונות כלליים עבור
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=1:x=2πn
cos(x)=1
cos(x)=1:פתרונות כלליים עבור
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
x=0+2πnפתור את:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
אחד את הפתרונותx=2π​+2πn,x=23π​+2πn,x=2πn

גרף

Sorry, your browser does not support this application
הצג גרף אינטראקטיבי

דוגמאות פופולריות

cos^4(x)+2cos^2(x)=1cos4(x)+2cos2(x)=1cos^2(x)+sin^2(x)=cos^5(x)cos2(x)+sin2(x)=cos5(x)sin(x-45^5)=((sqrt(2)))/2sin(x−455)=2(2​)​(sin(x)-sqrt(3)*cos(x))/2 =02sin(x)−3​⋅cos(x)​=0cos(1/(3x))= 1/3cos(3x1​)=31​
כלי לימודפותר מתמטיקה בינה מלאכותיתAI Chatדפי עבודהתרגולשליפיםמחשבוניםמחשבון גרפימחשבון גאומטריהאמת פתרון
אפליקציותאפליקציית Symbolab (Android)מחשבון גרפי (Android)תרגול (Android)אפליקציית Symbolab (iOS)מחשבון גרפי (iOS)תרגול (iOS)תוסף Chrome
חֶברָהעל Symbolabבלוגעזרה
משפטיפרטיותService Termsמדיניות קובצי Cookieהגדרות עוגיותאל תמכור או תשתף את המידע האישי שליזכויות יוצרים, הנחיות קהילה, DSA ומשאבים משפטיים אחריםמרכז משפטי Learneo
מדיה חברתית
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024