Solution
Solution
+1
Decimal Notation
Solution steps
Apply log rules
Verify Solutions:True
The solution is
Popular Examples
log_{3}(x+7)=log_{3}(x-1)+2log_{3}(x)-log_{x}(9)=0ln(T)=1.56+0.82*ln(56)log_{10}(5k)=10-6=-sqrt(ln((0)^2+c_{1))}
Frequently Asked Questions (FAQ)
What is the answer to log_{3}(4x)=log_{6}(x) ?
The answer to log_{3}(4x)=log_{6}(x) is x= 1/(6^{(2log_{6)(2))/(1-log_{6)(3)}}}Solve for x: log_{3}(4x)=log_{6}(x)
The solution is x= 1/(6^{(2log_{6)(2))/(1-log_{6)(3)}}}