Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=(3x+4)/(2x-5)
inverse\:f(x)=\frac{3x+4}{2x-5}
slope of 3(y-1)=2x+2
slope\:3(y-1)=2x+2
asymptotes of f(x)=(x^2-5x)/(x^2-9)
asymptotes\:f(x)=\frac{x^{2}-5x}{x^{2}-9}
extreme f(x)=x^{4/5}(x+3)
extreme\:f(x)=x^{\frac{4}{5}}(x+3)
domain of f(x)=(7x-3)/(3x^2+3)
domain\:f(x)=\frac{7x-3}{3x^{2}+3}
slope of y=0
slope\:y=0
critical f(x)=(x^3)/((x+1))
critical\:f(x)=\frac{x^{3}}{(x+1)}
domain of f(x)=x-2-3x^2
domain\:f(x)=x-2-3x^{2}
range of f(x)=((x^2+4x-5))/((x^2+x-2))
range\:f(x)=\frac{(x^{2}+4x-5)}{(x^{2}+x-2)}
domain of-x^2+4x
domain\:-x^{2}+4x
inverse of f(x)=(7-5x)/(5x+2)
inverse\:f(x)=\frac{7-5x}{5x+2}
range of f(x)=(5x+2)/(x-3)
range\:f(x)=\frac{5x+2}{x-3}
extreme f(x)=9.46
extreme\:f(x)=9.46
inverse of f(x)=\sqrt[3]{x/8}-6
inverse\:f(x)=\sqrt[3]{\frac{x}{8}}-6
slope of y=-3/4
slope\:y=-\frac{3}{4}
midpoint (-9,-1),(-3,7)
midpoint\:(-9,-1),(-3,7)
symmetry y=x^2+x
symmetry\:y=x^{2}+x
simplify (3.8)(10.4)
simplify\:(3.8)(10.4)
domain of f(x)= 8/(x-1)
domain\:f(x)=\frac{8}{x-1}
domain of f(x)=(x^2-4)/(x-2)
domain\:f(x)=\frac{x^{2}-4}{x-2}
domain of ln(3-x)+1/(x^2-4)
domain\:\ln(3-x)+\frac{1}{x^{2}-4}
inverse of f(x)=log_{1/2}(x/4)
inverse\:f(x)=\log_{\frac{1}{2}}(\frac{x}{4})
range of sqrt(x-2)
range\:\sqrt{x-2}
inverse of-2cos(3x)
inverse\:-2\cos(3x)
inverse of f(x)=2x^2-8x+3
inverse\:f(x)=2x^{2}-8x+3
domain of 9/x
domain\:\frac{9}{x}
inverse of f(x)=2x^2-4x
inverse\:f(x)=2x^{2}-4x
midpoint (-15,-2),(-6,-4)
midpoint\:(-15,-2),(-6,-4)
extreme f(x)=1+5x+x^2
extreme\:f(x)=1+5x+x^{2}
intercepts of f(x)=x+3y=6
intercepts\:f(x)=x+3y=6
simplify (3.9)(14.9)
simplify\:(3.9)(14.9)
domain of f(x)=2x^2+9
domain\:f(x)=2x^{2}+9
domain of-ln((1-x)/x)
domain\:-\ln(\frac{1-x}{x})
inverse of f(x)=7sin(5x+4)
inverse\:f(x)=7\sin(5x+4)
asymptotes of y=(2x^2)/(x^2-1)
asymptotes\:y=\frac{2x^{2}}{x^{2}-1}
inverse of f(x)=((-9-7x)/3)
inverse\:f(x)=(\frac{-9-7x}{3})
inverse of f(x)=8x-12
inverse\:f(x)=8x-12
intercepts of x^4-6x^2-8
intercepts\:x^{4}-6x^{2}-8
f(x)=tan(x)
f(x)=\tan(x)
intercepts of f(x)=(6x-6)/(x+2)
intercepts\:f(x)=\frac{6x-6}{x+2}
intercepts of f(x)=x^2-4x+2
intercepts\:f(x)=x^{2}-4x+2
line (-7,4),(5,10)
line\:(-7,4),(5,10)
range of f(x)=-2x^2
range\:f(x)=-2x^{2}
asymptotes of f(x)=(x^2+x-12)/(x-3)
asymptotes\:f(x)=\frac{x^{2}+x-12}{x-3}
perpendicular y= 2/3 x-3,(6,-1)
perpendicular\:y=\frac{2}{3}x-3,(6,-1)
domain of f(x)=5tan(5x)
domain\:f(x)=5\tan(5x)
inverse of f(x)=e^{2x-8}
inverse\:f(x)=e^{2x-8}
parity x^3-x^7
parity\:x^{3}-x^{7}
asymptotes of f(x)=(-5)/(x+3)
asymptotes\:f(x)=\frac{-5}{x+3}
line 2x+5y=-19
line\:2x+5y=-19
domain of f(x)=8x+3
domain\:f(x)=8x+3
range of f(x)=1-sqrt(x)
range\:f(x)=1-\sqrt{x}
domain of f(x)=(x^2)/(sqrt(5-x))
domain\:f(x)=\frac{x^{2}}{\sqrt{5-x}}
domain of ln(1+(x+1)/(x+4))
domain\:\ln(1+\frac{x+1}{x+4})
critical f(x)=x^3-11x^2+39x-47
critical\:f(x)=x^{3}-11x^{2}+39x-47
parity f(x)=x^3-3y=12
parity\:f(x)=x^{3}-3y=12
inverse of f(x)=2.5x+15.5
inverse\:f(x)=2.5x+15.5
y=x^2-8x+12
y=x^{2}-8x+12
critical x-5x^{1/5}
critical\:x-5x^{\frac{1}{5}}
domain of f(x)=log_{8}(x)
domain\:f(x)=\log_{8}(x)
intercepts of f(x)=x+1
intercepts\:f(x)=x+1
extreme f(x)=-x^2-8x-5
extreme\:f(x)=-x^{2}-8x-5
slope of y=6x+4
slope\:y=6x+4
parallel y=-3x
parallel\:y=-3x
asymptotes of f(x)=((x+3))/((-x-2))
asymptotes\:f(x)=\frac{(x+3)}{(-x-2)}
periodicity of f(x)=2sin(3x-pi)
periodicity\:f(x)=2\sin(3x-π)
slope of y=8x-4
slope\:y=8x-4
extreme y=-x^2+27x-54
extreme\:y=-x^{2}+27x-54
extreme f(x)=x^2-x+3
extreme\:f(x)=x^{2}-x+3
domain of f(x)=5x-4
domain\:f(x)=5x-4
domain of f(x)= 2/3 x^2
domain\:f(x)=\frac{2}{3}x^{2}
slope of y+1=3(x-4)
slope\:y+1=3(x-4)
range of (x+6)^2
range\:(x+6)^{2}
domain of f(x)= 1/(5x)+1
domain\:f(x)=\frac{1}{5x}+1
slope of-2x-7y=-13
slope\:-2x-7y=-13
critical ln(x-2)
critical\:\ln(x-2)
asymptotes of f(x)=(2x-1)/(2-x)
asymptotes\:f(x)=\frac{2x-1}{2-x}
domain of f(x)=(3x+5)/(9x)
domain\:f(x)=\frac{3x+5}{9x}
inverse of f(x)=(2x-4)/(x-6)
inverse\:f(x)=\frac{2x-4}{x-6}
slope of 15=-3y+21x
slope\:15=-3y+21x
domain of 3^x
domain\:3^{x}
asymptotes of f(x)=(8x+36)/(10x-5)
asymptotes\:f(x)=\frac{8x+36}{10x-5}
domain of log_{2}(x+5)+1
domain\:\log_{2}(x+5)+1
range of f(x)=sqrt(6-2x)
range\:f(x)=\sqrt{6-2x}
symmetry (2x)/(x^2+4)
symmetry\:\frac{2x}{x^{2}+4}
domain of f(x)=(x-10)^2
domain\:f(x)=(x-10)^{2}
intercepts of f(x)=y^2-2-y
intercepts\:f(x)=y^{2}-2-y
asymptotes of f(x)=(x-1)/((2x+1)(x-5))
asymptotes\:f(x)=\frac{x-1}{(2x+1)(x-5)}
slope of-2/3
slope\:-\frac{2}{3}
intercepts of f(x)=3x+4y+2z=24
intercepts\:f(x)=3x+4y+2z=24
intercepts of f(x)=4x^2+8x
intercepts\:f(x)=4x^{2}+8x
intercepts of log_{8}(x)
intercepts\:\log_{8}(x)
monotone f(x)=x^2e^{-x}
monotone\:f(x)=x^{2}e^{-x}
inverse of sqrt(x-4)^2+4
inverse\:\sqrt{x-4}^{2}+4
inverse of f(x)=x-12
inverse\:f(x)=x-12
inverse of f(x)= 1/2 ln(2x-1)
inverse\:f(x)=\frac{1}{2}\ln(2x-1)
distance (-7,8),(-1,1)
distance\:(-7,8),(-1,1)
extreme y=x^2-4
extreme\:y=x^{2}-4
inverse of 1/(x-1)
inverse\:\frac{1}{x-1}
midpoint (3,5),(-7,-7)
midpoint\:(3,5),(-7,-7)
1
..
145
146
147
148
149
..
1324