Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=((3x+1))/((x-2))
inverse\:f(x)=\frac{(3x+1)}{(x-2)}
intercepts of f(x)=x^3-x^2+x-1
intercepts\:f(x)=x^{3}-x^{2}+x-1
slope of x+2y=2
slope\:x+2y=2
range of pi-3arcsin(2x-1)
range\:π-3\arcsin(2x-1)
parallel y=-1/3 x+9
parallel\:y=-\frac{1}{3}x+9
domain of f(x)=sqrt(t-4)
domain\:f(x)=\sqrt{t-4}
symmetry (x+4)^2-9
symmetry\:(x+4)^{2}-9
slope ofintercept 16x-20y=60
slopeintercept\:16x-20y=60
domain of (sqrt(x+8)+2)/(x+2)
domain\:\frac{\sqrt{x+8}+2}{x+2}
inverse of f(x)=(x+3)/(x-4)
inverse\:f(x)=\frac{x+3}{x-4}
asymptotes of f(x)=(5x)/(2x+3)
asymptotes\:f(x)=\frac{5x}{2x+3}
inverse of f(x)=x^2,[0,infinity ]
inverse\:f(x)=x^{2},[0,\infty\:]
asymptotes of f(x)=(2x^3+3)/(x^3+2)
asymptotes\:f(x)=\frac{2x^{3}+3}{x^{3}+2}
parity f(x)=x^5
parity\:f(x)=x^{5}
domain of f(x)=(4x-1)/(5x-3)
domain\:f(x)=\frac{4x-1}{5x-3}
monotone (x^5)/(x^2-1)
monotone\:\frac{x^{5}}{x^{2}-1}
midpoint (-5,-2),(-8,-5)
midpoint\:(-5,-2),(-8,-5)
domain of 1/5 x-3
domain\:\frac{1}{5}x-3
range of f(x)=sqrt(x-12)
range\:f(x)=\sqrt{x-12}
asymptotes of f(x)=(4x)/(x^2+3x-10)
asymptotes\:f(x)=\frac{4x}{x^{2}+3x-10}
range of arctan(x)
range\:\arctan(x)
range of 7+sqrt(6+x)
range\:7+\sqrt{6+x}
inflection f(x)= 6/(x^2)
inflection\:f(x)=\frac{6}{x^{2}}
intercepts of f(x)=x^6-7x^3-8
intercepts\:f(x)=x^{6}-7x^{3}-8
inverse of e^x+2e^{2x}
inverse\:e^{x}+2e^{2x}
inverse of f(x)=(x-3)/(x+2)
inverse\:f(x)=\frac{x-3}{x+2}
range of f(x)=(x-7)^2
range\:f(x)=(x-7)^{2}
y=2x-2
y=2x-2
line (2,3),(-1,5)
line\:(2,3),(-1,5)
range of 1+(2+x)^{1/2}
range\:1+(2+x)^{\frac{1}{2}}
range of f(x)=-x^3
range\:f(x)=-x^{3}
parity f(x)=10+3x^2
parity\:f(x)=10+3x^{2}
slope of (11.9)5
slope\:(11.9)5
inverse of f(x)=4x-3
inverse\:f(x)=4x-3
parity f(x)=6x^3
parity\:f(x)=6x^{3}
amplitude of sin(x-3)
amplitude\:\sin(x-3)
parity f(x)=sqrt(x)-6
parity\:f(x)=\sqrt{x}-6
inverse of 9+(8+x)^{1/2}
inverse\:9+(8+x)^{\frac{1}{2}}
line m=-3,(-4,12)
line\:m=-3,(-4,12)
range of 65x-10
range\:65x-10
shift-3sin(pix+2)
shift\:-3\sin(πx+2)
asymptotes of f(x)= 1/(-2x^2+2x+12)
asymptotes\:f(x)=\frac{1}{-2x^{2}+2x+12}
inverse of f(x)=2x^{3/2}
inverse\:f(x)=2x^{\frac{3}{2}}
intercepts of f(x)=(x^2-16)/(x+4)
intercepts\:f(x)=\frac{x^{2}-16}{x+4}
domain of f(x)=(11)/(11+x)
domain\:f(x)=\frac{11}{11+x}
domain of f(x)=(4x+2)/(x^2-4x-32)
domain\:f(x)=\frac{4x+2}{x^{2}-4x-32}
domain of x/(x^2-16)
domain\:\frac{x}{x^{2}-16}
simplify (4.9)(4.1)
simplify\:(4.9)(4.1)
slope of x=6y-7
slope\:x=6y-7
domain of f(x)=(x+2)/(x^2-3x-10)
domain\:f(x)=\frac{x+2}{x^{2}-3x-10}
slope of 9x-y=36
slope\:9x-y=36
intercepts of f(x)=(2x^2-3x-20)/(x-5)
intercepts\:f(x)=\frac{2x^{2}-3x-20}{x-5}
midpoint (9,2),(-7,-9)
midpoint\:(9,2),(-7,-9)
shift f(x)=2sin(2x-1/(2.5))
shift\:f(x)=2\sin(2x-\frac{1}{2.5})
critical f(x)=5xe^{6x}
critical\:f(x)=5xe^{6x}
asymptotes of f(x)=3tan((3pi)/2 x)
asymptotes\:f(x)=3\tan(\frac{3π}{2}x)
domain of (2x+9)/(9x-2)*(8x)/(9x-2)
domain\:\frac{2x+9}{9x-2}\cdot\:\frac{8x}{9x-2}
line m=-3,(-4,5)
line\:m=-3,(-4,5)
range of e^{x-2}
range\:e^{x-2}
extreme f(x)=((x^2-1))/(x^2+1)
extreme\:f(x)=\frac{(x^{2}-1)}{x^{2}+1}
inverse of (x-2)^2-3
inverse\:(x-2)^{2}-3
domain of f(x)=2x
domain\:f(x)=2x
critical e^x*(x^2+4x+1)
critical\:e^{x}\cdot\:(x^{2}+4x+1)
parallel y= 5/6 x-6,(-2,4)
parallel\:y=\frac{5}{6}x-6,(-2,4)
domain of f(x)= 1/(sqrt(3x+6))
domain\:f(x)=\frac{1}{\sqrt{3x+6}}
critical x^3-27
critical\:x^{3}-27
asymptotes of f(x)=(x+1)/(x-5)
asymptotes\:f(x)=\frac{x+1}{x-5}
line (-2,8),(4,6)
line\:(-2,8),(4,6)
domain of x*sqrt(x)
domain\:x\cdot\:\sqrt{x}
domain of f(x)=(2x^2-6x+2)/((2x-3)^2)
domain\:f(x)=\frac{2x^{2}-6x+2}{(2x-3)^{2}}
inflection f(x)=x^4-54x^2+1
inflection\:f(x)=x^{4}-54x^{2}+1
periodicity of f(x)=-2sin(2pix)
periodicity\:f(x)=-2\sin(2πx)
extreme f(x)=-2-x^{2/3}
extreme\:f(x)=-2-x^{\frac{2}{3}}
parallel y=-1/2 x+3
parallel\:y=-\frac{1}{2}x+3
inverse of f(x)=sqrt(4-x)+3
inverse\:f(x)=\sqrt{4-x}+3
domain of y=sqrt(x+7)
domain\:y=\sqrt{x+7}
domain of f(x)= 4/(sqrt(x+3))
domain\:f(x)=\frac{4}{\sqrt{x+3}}
domain of (x^2+3x-4)(x+4)
domain\:(x^{2}+3x-4)(x+4)
domain of x^3-12x^2+45x-50
domain\:x^{3}-12x^{2}+45x-50
asymptotes of f(x)=(4x+1)/(x-2)
asymptotes\:f(x)=\frac{4x+1}{x-2}
critical f(x)=ln(x-9)
critical\:f(x)=\ln(x-9)
range of-x^2-2x+3
range\:-x^{2}-2x+3
extreme 4x(x^2-9)
extreme\:4x(x^{2}-9)
inverse of y=(1/2)^{4-3x}-7
inverse\:y=(\frac{1}{2})^{4-3x}-7
domain of f(t)=(4-t^2)/(2-t)
domain\:f(t)=\frac{4-t^{2}}{2-t}
range of-3/2 sin(2x-(3pi)/4)+7/3
range\:-\frac{3}{2}\sin(2x-\frac{3π}{4})+\frac{7}{3}
intercepts of f(x)=(0,-5)(5,0)
intercepts\:f(x)=(0,-5)(5,0)
slope of f(x)=2(2)^4-16(2)^3+8
slope\:f(x)=2(2)^{4}-16(2)^{3}+8
line (1,3),(2,5)
line\:(1,3),(2,5)
inverse of f(x)=-12x+5
inverse\:f(x)=-12x+5
frequency 2.1sin(3.8t)
frequency\:2.1\sin(3.8t)
inverse of f(x)= 6/(5-x)
inverse\:f(x)=\frac{6}{5-x}
parity f(x)= 1/2 x^3-2x
parity\:f(x)=\frac{1}{2}x^{3}-2x
range of f(x)=sqrt(2-x)
range\:f(x)=\sqrt{2-x}
amplitude of 6sin(1/4 x)
amplitude\:6\sin(\frac{1}{4}x)
y= 1/2 x
y=\frac{1}{2}x
intercepts of f(x)=y-3=3(x+1)
intercepts\:f(x)=y-3=3(x+1)
domain of 3sqrt(x-2)+2
domain\:3\sqrt{x-2}+2
inverse of 4^x
inverse\:4^{x}
domain of f(x)=x^4-10x^3+20x^2+25x
domain\:f(x)=x^{4}-10x^{3}+20x^{2}+25x
1
2
3
4
5
6
7
..
1324