Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
AI Chat
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

cos^4(x)+cos^3(x)-2=0

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

cos4(x)+cos3(x)−2=0

Решение

x=2πn
+1
Градусы
x=0∘+360∘n
Шаги решения
cos4(x)+cos3(x)−2=0
Решитe подстановкой
cos4(x)+cos3(x)−2=0
Допустим: cos(x)=uu4+u3−2=0
u4+u3−2=0:u=1,u≈−1.54368…
u4+u3−2=0
Найдите множитель u4+u3−2:(u−1)(u3+2u2+2u+2)
u4+u3−2
Используйте теорему о рациональных корнях
a0​=2,an​=1
Делители a0​:1,2,Делители an​:1
Поэтому проверьте следующие рациональные числа:±11,2​
11​ является корнем выражения, поэтому вынесите из него u−1
=(u−1)u−1u4+u3−2​
u−1u4+u3−2​=u3+2u2+2u+2
u−1u4+u3−2​
Поделите u−1u4+u3−2​:u−1u4+u3−2​=u3+u−12u3−2​
Разделите старшие коэффициенты числителя u4+u3−2
и делителя u−1:uu4​=u3
Частное=u3
Умножьте u−1 на u3:u4−u3Вычтите u4−u3 из u4+u3−2, чтобы получить новый остатокОстаток=2u3−2
Поэтомуu−1u4+u3−2​=u3+u−12u3−2​
=u3+u−12u3−2​
Поделите u−12u3−2​:u−12u3−2​=2u2+u−12u2−2​
Разделите старшие коэффициенты числителя 2u3−2
и делителя u−1:u2u3​=2u2
Частное=2u2
Умножьте u−1 на 2u2:2u3−2u2Вычтите 2u3−2u2 из 2u3−2, чтобы получить новый остатокОстаток=2u2−2
Поэтомуu−12u3−2​=2u2+u−12u2−2​
=u3+2u2+u−12u2−2​
Поделите u−12u2−2​:u−12u2−2​=2u+u−12u−2​
Разделите старшие коэффициенты числителя 2u2−2
и делителя u−1:u2u2​=2u
Частное=2u
Умножьте u−1 на 2u:2u2−2uВычтите 2u2−2u из 2u2−2, чтобы получить новый остатокОстаток=2u−2
Поэтомуu−12u2−2​=2u+u−12u−2​
=u3+2u2+2u+u−12u−2​
Поделите u−12u−2​:u−12u−2​=2
Разделите старшие коэффициенты числителя 2u−2
и делителя u−1:u2u​=2
Частное=2
Умножьте u−1 на 2:2u−2Вычтите 2u−2 из 2u−2, чтобы получить новый остатокОстаток=0
Поэтомуu−12u−2​=2
=u3+2u2+2u+2
=(u−1)(u3+2u2+2u+2)
(u−1)(u3+2u2+2u+2)=0
Использование принципа нулевого множителя: Если ab=0то a=0или b=0u−1=0oru3+2u2+2u+2=0
Решить u−1=0:u=1
u−1=0
Переместите 1вправо
u−1=0
Добавьте 1 к обеим сторонамu−1+1=0+1
После упрощения получаемu=1
u=1
Решить u3+2u2+2u+2=0:u≈−1.54368…
u3+2u2+2u+2=0
Найдите одно решение для u3+2u2+2u+2=0 с использованием метода Ньютона-Рафсона:u≈−1.54368…
u3+2u2+2u+2=0
Определение приближения Ньютона-Рафсона
f(u)=u3+2u2+2u+2
Найдите f′(u):3u2+4u+2
dud​(u3+2u2+2u+2)
Производная суммы: (f±g)′=f′±g′=dud​(u3)+dud​(2u2)+dud​(2u)+dud​(2)
dud​(u3)=3u2
dud​(u3)
Производная степенной функции: dxd​(xa)=a⋅xa−1=3u3−1
После упрощения получаем=3u2
dud​(2u2)=4u
dud​(2u2)
Производная переменной и множителя: (a⋅f)′=a⋅f′=2dud​(u2)
Производная степенной функции: dxd​(xa)=a⋅xa−1=2⋅2u2−1
После упрощения получаем=4u
dud​(2u)=2
dud​(2u)
Производная переменной и множителя: (a⋅f)′=a⋅f′=2dudu​
Воспользуемся таблицей производных элементарных функций : dudu​=1=2⋅1
После упрощения получаем=2
dud​(2)=0
dud​(2)
Производная постоянной: dxd​(a)=0=0
=3u2+4u+2+0
После упрощения получаем=3u2+4u+2
Пусть u0​=−1Вычислите un+1​ до момента Δun+1​<0.000001
u1​=−2:Δu1​=1
f(u0​)=(−1)3+2(−1)2+2(−1)+2=1f′(u0​)=3(−1)2+4(−1)+2=1u1​=−2
Δu1​=∣−2−(−1)∣=1Δu1​=1
u2​=−1.66666…:Δu2​=0.33333…
f(u1​)=(−2)3+2(−2)2+2(−2)+2=−2f′(u1​)=3(−2)2+4(−2)+2=6u2​=−1.66666…
Δu2​=∣−1.66666…−(−2)∣=0.33333…Δu2​=0.33333…
u3​=−1.55555…:Δu3​=0.11111…
f(u2​)=(−1.66666…)3+2(−1.66666…)2+2(−1.66666…)+2=−0.40740…f′(u2​)=3(−1.66666…)2+4(−1.66666…)+2=3.66666…u3​=−1.55555…
Δu3​=∣−1.55555…−(−1.66666…)∣=0.11111…Δu3​=0.11111…
u4​=−1.54381…:Δu4​=0.01174…
f(u3​)=(−1.55555…)3+2(−1.55555…)2+2(−1.55555…)+2=−0.03566…f′(u3​)=3(−1.55555…)2+4(−1.55555…)+2=3.03703…u4​=−1.54381…
Δu4​=∣−1.54381…−(−1.55555…)∣=0.01174…Δu4​=0.01174…
u5​=−1.54368…:Δu5​=0.00012…
f(u4​)=(−1.54381…)3+2(−1.54381…)2+2(−1.54381…)+2=−0.00036…f′(u4​)=3(−1.54381…)2+4(−1.54381…)+2=2.97481…u5​=−1.54368…
Δu5​=∣−1.54368…−(−1.54381…)∣=0.00012…Δu5​=0.00012…
u6​=−1.54368…:Δu6​=1.34021E−8
f(u5​)=(−1.54368…)3+2(−1.54368…)2+2(−1.54368…)+2=−3.98601E−8f′(u5​)=3(−1.54368…)2+4(−1.54368…)+2=2.97417…u6​=−1.54368…
Δu6​=∣−1.54368…−(−1.54368…)∣=1.34021E−8Δu6​=1.34021E−8
u≈−1.54368…
Примените деление столбиком:u+1.54368…u3+2u2+2u+2​=u2+0.45631…u+1.29559…
u2+0.45631…u+1.29559…≈0
Найдите одно решение для u2+0.45631…u+1.29559…=0 с использованием метода Ньютона-Рафсона:Решения для u∈Rнет
u2+0.45631…u+1.29559…=0
Определение приближения Ньютона-Рафсона
f(u)=u2+0.45631…u+1.29559…
Найдите f′(u):2u+0.45631…
dud​(u2+0.45631…u+1.29559…)
Производная суммы: (f±g)′=f′±g′=dud​(u2)+dud​(0.45631…u)+dud​(1.29559…)
dud​(u2)=2u
dud​(u2)
Производная степенной функции: dxd​(xa)=a⋅xa−1=2u2−1
После упрощения получаем=2u
dud​(0.45631…u)=0.45631…
dud​(0.45631…u)
Производная переменной и множителя: (a⋅f)′=a⋅f′=0.45631…dudu​
Воспользуемся таблицей производных элементарных функций : dudu​=1=0.45631…⋅1
После упрощения получаем=0.45631…
dud​(1.29559…)=0
dud​(1.29559…)
Производная постоянной: dxd​(a)=0=0
=2u+0.45631…+0
После упрощения получаем=2u+0.45631…
Пусть u0​=−3Вычислите un+1​ до момента Δun+1​<0.000001
u1​=−1.38976…:Δu1​=1.61023…
f(u0​)=(−3)2+0.45631…(−3)+1.29559…=8.92666…f′(u0​)=2(−3)+0.45631…=−5.54368…u1​=−1.38976…
Δu1​=∣−1.38976…−(−3)∣=1.61023…Δu1​=1.61023…
u2​=−0.27368…:Δu2​=1.11607…
f(u1​)=(−1.38976…)2+0.45631…(−1.38976…)+1.29559…=2.59286…f′(u1​)=2(−1.38976…)+0.45631…=−2.32321…u2​=−0.27368…
Δu2​=∣−0.27368…−(−1.38976…)∣=1.11607…Δu2​=1.11607…
u3​=13.40427…:Δu3​=13.67796…
f(u2​)=(−0.27368…)2+0.45631…(−0.27368…)+1.29559…=1.24561…f′(u2​)=2(−0.27368…)+0.45631…=−0.09106…u3​=13.40427…
Δu3​=∣13.40427…−(−0.27368…)∣=13.67796…Δu3​=13.67796…
u4​=6.54245…:Δu4​=6.86182…
f(u3​)=13.40427…2+0.45631…⋅13.40427…+1.29559…=187.08678…f′(u3​)=2⋅13.40427…+0.45631…=27.26486…u4​=6.54245…
Δu4​=∣6.54245…−13.40427…∣=6.86182…Δu4​=6.86182…
u5​=3.06531…:Δu5​=3.47713…
f(u4​)=6.54245…2+0.45631…⋅6.54245…+1.29559…=47.08466…f′(u4​)=2⋅6.54245…+0.45631…=13.54121…u5​=3.06531…
Δu5​=∣3.06531…−6.54245…∣=3.47713…Δu5​=3.47713…
u6​=1.22979…:Δu6​=1.83552…
f(u5​)=3.06531…2+0.45631…⋅3.06531…+1.29559…=12.09048…f′(u5​)=2⋅3.06531…+0.45631…=6.58693…u6​=1.22979…
Δu6​=∣1.22979…−3.06531…∣=1.83552…Δu6​=1.83552…
u7​=0.07434…:Δu7​=1.15544…
f(u6​)=1.22979…2+0.45631…⋅1.22979…+1.29559…=3.36914…f′(u6​)=2⋅1.22979…+0.45631…=2.91589…u7​=0.07434…
Δu7​=∣0.07434…−1.22979…∣=1.15544…Δu7​=1.15544…
u8​=−2.13233…:Δu8​=2.20668…
f(u7​)=0.07434…2+0.45631…⋅0.07434…+1.29559…=1.33505…f′(u7​)=2⋅0.07434…+0.45631…=0.60500…u8​=−2.13233…
Δu8​=∣−2.13233…−0.07434…∣=2.20668…Δu8​=2.20668…
u9​=−0.85371…:Δu9​=1.27861…
f(u8​)=(−2.13233…)2+0.45631…(−2.13233…)+1.29559…=4.86943…f′(u8​)=2(−2.13233…)+0.45631…=−3.80835…u9​=−0.85371…
Δu9​=∣−0.85371…−(−2.13233…)∣=1.27861…Δu9​=1.27861…
u10​=0.45300…:Δu10​=1.30672…
f(u9​)=(−0.85371…)2+0.45631…(−0.85371…)+1.29559…=1.63486…f′(u9​)=2(−0.85371…)+0.45631…=−1.25111…u10​=0.45300…
Δu10​=∣0.45300…−(−0.85371…)∣=1.30672…Δu10​=1.30672…
u11​=−0.80037…:Δu11​=1.25338…
f(u10​)=0.45300…2+0.45631…⋅0.45300…+1.29559…=1.70752…f′(u10​)=2⋅0.45300…+0.45631…=1.36232…u11​=−0.80037…
Δu11​=∣−0.80037…−0.45300…∣=1.25338…Δu11​=1.25338…
u12​=0.57232…:Δu12​=1.37269…
f(u11​)=(−0.80037…)2+0.45631…(−0.80037…)+1.29559…=1.57098…f′(u11​)=2(−0.80037…)+0.45631…=−1.14444…u12​=0.57232…
Δu12​=∣0.57232…−(−0.80037…)∣=1.37269…Δu12​=1.37269…
Невозможно найти решение
Решениеu≈−1.54368…
Решениями являютсяu=1,u≈−1.54368…
Делаем обратную замену u=cos(x)cos(x)=1,cos(x)≈−1.54368…
cos(x)=1,cos(x)≈−1.54368…
cos(x)=1:x=2πn
cos(x)=1
Общие решения для cos(x)=1
cos(x) таблица периодичности с циклом 2πn:
x=0+2πn
x=0+2πn
Решить x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1.54368…:Не имеет решения
cos(x)=−1.54368…
−1≤cos(x)≤1Неимеетрешения
Объедините все решенияx=2πn

График

Sorry, your browser does not support this application
Просмотр интерактивного графика

Популярные примеры

tan^2(x)= 1/(cos(x)+1)tan2(x)=cos(x)+11​(sin^2(x)-2cos(x)+1)/4 =04sin2(x)−2cos(x)+1​=0cos^2(x)+cos^4(x)+cos^6(x)=0cos2(x)+cos4(x)+cos6(x)=0sin(x)=(-1)/4sin(x)=4−1​sin^4(x)-sin^2(x)=0sin4(x)−sin2(x)=0
Инструменты для обученияИИ Решатель ЗадачAI ChatРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для Chrome
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьService TermsПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024