Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Trigonometry Problems
prove tan(θ)(cot(θ)+tan(θ))=sec^2(θ)
prove\:\tan(θ)(\cot(θ)+\tan(θ))=\sec^{2}(θ)
prove sec^2(-θ)-1=tan^2(θ)
prove\:\sec^{2}(-θ)-1=\tan^{2}(θ)
prove 2tan(x)=(cos(x))/(csc(x)-1)+(cos(x))/(csc(x)+1)
prove\:2\tan(x)=\frac{\cos(x)}{\csc(x)-1}+\frac{\cos(x)}{\csc(x)+1}
prove sin(-θ)sec(-θ)cot(-θ)=1
prove\:\sin(-θ)\sec(-θ)\cot(-θ)=1
prove cos^4(θ)-sin^4(θ)=1-2sin^2(θ)
prove\:\cos^{4}(θ)-\sin^{4}(θ)=1-2\sin^{2}(θ)
prove cot(x)sin(x)sec^2(x)=sec(x)
prove\:\cot(x)\sin(x)\sec^{2}(x)=\sec(x)
prove tan(2x)=(sin(2x))/(cos(2x))
prove\:\tan(2x)=\frac{\sin(2x)}{\cos(2x)}
prove sin^2(x)+4cos^2(x)=4-3sin^2(x)
prove\:\sin^{2}(x)+4\cos^{2}(x)=4-3\sin^{2}(x)
prove sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
prove\:\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)
prove 1/(1-cos(x))=(1+cos(x))/(sin^2(x))
prove\:\frac{1}{1-\cos(x)}=\frac{1+\cos(x)}{\sin^{2}(x)}
prove tan(θ+pi/2)=-cot(θ)
prove\:\tan(θ+\frac{π}{2})=-\cot(θ)
prove sin(B)+cos(B)cot(B)=csc(B)
prove\:\sin(B)+\cos(B)\cot(B)=\csc(B)
prove 3sin(5pi-x)=3sin(x)
prove\:3\sin(5π-x)=3\sin(x)
prove cos^2(θ)=(1+cos(2θ))/2
prove\:\cos^{2}(θ)=\frac{1+\cos(2θ)}{2}
prove 1-((sin^2(x)))/(1-cos(x))=-cos(x)
prove\:1-\frac{(\sin^{2}(x))}{1-\cos(x)}=-\cos(x)
prove (cos^2(α))/(1-sin(α))=1+sin(α)
prove\:\frac{\cos^{2}(α)}{1-\sin(α)}=1+\sin(α)
prove 2sin^2(θ)-1=1-2cos^2(θ)
prove\:2\sin^{2}(θ)-1=1-2\cos^{2}(θ)
prove cos(θ-pi)=-cos(θ)
prove\:\cos(θ-π)=-\cos(θ)
prove (tan^2(x))/(sin^2(x))=tan^2(x)+1
prove\:\frac{\tan^{2}(x)}{\sin^{2}(x)}=\tan^{2}(x)+1
prove csc(A-B)=(csc(A)csc(B))/(cot(B)-cot(A))
prove\:\csc(A-B)=\frac{\csc(A)\csc(B)}{\cot(B)-\cot(A)}
prove (cot^2(θ))/(csc^2(θ))=cos^2(θ)
prove\:\frac{\cot^{2}(θ)}{\csc^{2}(θ)}=\cos^{2}(θ)
prove (csc(a)+1)(csc(a)-1)=cot^2(a)
prove\:(\csc(a)+1)(\csc(a)-1)=\cot^{2}(a)
prove (sec(x))(csc(x))=cot(x)+tan(x)
prove\:(\sec(x))(\csc(x))=\cot(x)+\tan(x)
prove (cos(θ))/(1+sin(θ))=sec(θ)-tan(θ)
prove\:\frac{\cos(θ)}{1+\sin(θ)}=\sec(θ)-\tan(θ)
prove 2cos^2(A)-1=1-2sin^2(A)
prove\:2\cos^{2}(A)-1=1-2\sin^{2}(A)
prove sec^4(t)-tan^4(t)=1+2tan^2(t)
prove\:\sec^{4}(t)-\tan^{4}(t)=1+2\tan^{2}(t)
prove cos(4θ)=cos^2(2θ)-sin^2(2θ)
prove\:\cos(4θ)=\cos^{2}(2θ)-\sin^{2}(2θ)
prove sec(x)csc(x)-cot(x)=tan(x)
prove\:\sec(x)\csc(x)-\cot(x)=\tan(x)
prove tan(θ)sin(2θ)=2-2cos^2(θ)
prove\:\tan(θ)\sin(2θ)=2-2\cos^{2}(θ)
prove-30cos(3x)sin(3x)=-15sin(6x)
prove\:-30\cos(3x)\sin(3x)=-15\sin(6x)
prove 2sin^2(θ)-1=sin^4(θ)-cos^4(θ)
prove\:2\sin^{2}(θ)-1=\sin^{4}(θ)-\cos^{4}(θ)
prove csc(2θ)=(1+cot^2(θ))/(2cot(θ))
prove\:\csc(2θ)=\frac{1+\cot^{2}(θ)}{2\cot(θ)}
prove csc^4(θ)-cot^4(θ)=2cot^2(θ)+1
prove\:\csc^{4}(θ)-\cot^{4}(θ)=2\cot^{2}(θ)+1
prove sec(b)cot(b)=csc(b)
prove\:\sec(b)\cot(b)=\csc(b)
prove (1-cos(2θ))/(sin(2θ))=tan(θ)
prove\:\frac{1-\cos(2θ)}{\sin(2θ)}=\tan(θ)
prove (cos(3x))/(sin(x))+(sin(3x))/(cos(x))=2cot(2x)
prove\:\frac{\cos(3x)}{\sin(x)}+\frac{\sin(3x)}{\cos(x)}=2\cot(2x)
prove sin(A+B)=sin(A)+sin(B)
prove\:\sin(A+B)=\sin(A)+\sin(B)
prove (cot^2(B)-cos^2(B))/(csc^2(B)-1)=cos^2(B)
prove\:\frac{\cot^{2}(B)-\cos^{2}(B)}{\csc^{2}(B)-1}=\cos^{2}(B)
prove cos(2a)=1-2sin^2(a)
prove\:\cos(2a)=1-2\sin^{2}(a)
prove sec^2(x)-tan^2(x)=tan(x)cot(x)
prove\:\sec^{2}(x)-\tan^{2}(x)=\tan(x)\cot(x)
prove (tan(θ))/(tan(θ)-1)= 1/(1-cot(θ))
prove\:\frac{\tan(θ)}{\tan(θ)-1}=\frac{1}{1-\cot(θ)}
prove csc(u)-sin(u)=cos(u)cot(u)
prove\:\csc(u)-\sin(u)=\cos(u)\cot(u)
prove (tan^2(x))/(sec(x)-1)=sec(x)+1
prove\:\frac{\tan^{2}(x)}{\sec(x)-1}=\sec(x)+1
prove (1+tan^2(x))/(csc(x)sec(x))=tan(x)
prove\:\frac{1+\tan^{2}(x)}{\csc(x)\sec(x)}=\tan(x)
prove (sin(θ))/(csc(θ)-cot(θ))=1+cos(θ)
prove\:\frac{\sin(θ)}{\csc(θ)-\cot(θ)}=1+\cos(θ)
prove sec(θ)-tan(θ)sin(θ)= 1/(sec(θ))
prove\:\sec(θ)-\tan(θ)\sin(θ)=\frac{1}{\sec(θ)}
prove cot(-a)cos(-a)+sin(-a)=-csc(a)
prove\:\cot(-a)\cos(-a)+\sin(-a)=-\csc(a)
prove sin(2a)-tan(a)=tan(a)cos(2a)
prove\:\sin(2a)-\tan(a)=\tan(a)\cos(2a)
prove 2cos(x)tan(x)csc(x)=2
prove\:2\cos(x)\tan(x)\csc(x)=2
prove sec^2(y)-cot^2(pi/2-y)=1
prove\:\sec^{2}(y)-\cot^{2}(\frac{π}{2}-y)=1
prove sin(pi/3+x)-sin(pi/3-x)=sin(x)
prove\:\sin(\frac{π}{3}+x)-\sin(\frac{π}{3}-x)=\sin(x)
prove 1+cos(2x)=2cos^2(x)
prove\:1+\cos(2x)=2\cos^{2}(x)
prove tan(x)(csc(x)-sin(x))=cos(x)
prove\:\tan(x)(\csc(x)-\sin(x))=\cos(x)
prove tan(x)(sin(x)+cot(x)cos(x))=sec(x)
prove\:\tan(x)(\sin(x)+\cot(x)\cos(x))=\sec(x)
prove sin(x)cos^2(x)+sin^3(x)=sin(x)
prove\:\sin(x)\cos^{2}(x)+\sin^{3}(x)=\sin(x)
prove (csc(x)+sec(x))/(tan(x)+1)=csc(x)
prove\:\frac{\csc(x)+\sec(x)}{\tan(x)+1}=\csc(x)
prove cos(pi/3)= 1/2
prove\:\cos(\frac{π}{3})=\frac{1}{2}
prove sec(-x)=sec(x)
prove\:\sec(-x)=\sec(x)
prove cos(pi/3+x)+cos(pi/3-x)=cos(x)
prove\:\cos(\frac{π}{3}+x)+\cos(\frac{π}{3}-x)=\cos(x)
prove (csc(θ))/(cot(θ)+tan(θ))=cos(θ)
prove\:\frac{\csc(θ)}{\cot(θ)+\tan(θ)}=\cos(θ)
prove sec^2(x)+tan^2(x)=2sec^2(x)-1
prove\:\sec^{2}(x)+\tan^{2}(x)=2\sec^{2}(x)-1
prove cos^2(2x)=(1+cos(4x))/2
prove\:\cos^{2}(2x)=\frac{1+\cos(4x)}{2}
prove sin^2(θ)csc^2(θ)-sin^2(θ)=cos^2(θ)
prove\:\sin^{2}(θ)\csc^{2}(θ)-\sin^{2}(θ)=\cos^{2}(θ)
prove cos(x+pi/3)+sin(x-pi/6)=0
prove\:\cos(x+\frac{π}{3})+\sin(x-\frac{π}{6})=0
prove (1-tan^2(b))/(1+tan^2(b))=cos(2b)
prove\:\frac{1-\tan^{2}(b)}{1+\tan^{2}(b)}=\cos(2b)
prove (sin(θ)+cos(θ))/(cos(θ))=1+tan(θ)
prove\:\frac{\sin(θ)+\cos(θ)}{\cos(θ)}=1+\tan(θ)
prove 8/(cos(x)+1)+8/(cos(x)-1)=-16csc(x)cot(x)
prove\:\frac{8}{\cos(x)+1}+\frac{8}{\cos(x)-1}=-16\csc(x)\cot(x)
prove sec(x)(sec(x)-cos(x))=tan^2(x)
prove\:\sec(x)(\sec(x)-\cos(x))=\tan^{2}(x)
prove 1/(sin(x))-sin(x)=cot(x)cos(x)
prove\:\frac{1}{\sin(x)}-\sin(x)=\cot(x)\cos(x)
prove sin(3x)=3sin(x)-4(sin(x))^3
prove\:\sin(3x)=3\sin(x)-4(\sin(x))^{3}
prove (5sin(θ)-5cos(θ))^2=25-25sin(2θ)
prove\:(5\sin(θ)-5\cos(θ))^{2}=25-25\sin(2θ)
prove (sin(θ)-1)/(cos(θ))=tan(θ)-sec(θ)
prove\:\frac{\sin(θ)-1}{\cos(θ)}=\tan(θ)-\sec(θ)
prove cot(x)*sec(x)=csc(x)
prove\:\cot(x)\cdot\:\sec(x)=\csc(x)
prove 2-csc^2(θ)=1-cot^2(θ)
prove\:2-\csc^{2}(θ)=1-\cot^{2}(θ)
prove 1-(cos^2(x))/(1-sin(x))=-sin(x)
prove\:1-\frac{\cos^{2}(x)}{1-\sin(x)}=-\sin(x)
prove sin(x)= 1/(csc(x))
prove\:\sin(x)=\frac{1}{\csc(x)}
prove-tan(t)+(cos(t))/(1-sin(t))=sec(t)
prove\:-\tan(t)+\frac{\cos(t)}{1-\sin(t)}=\sec(t)
prove cot^4(x)-csc^4(x)=1-2csc^2(x)
prove\:\cot^{4}(x)-\csc^{4}(x)=1-2\csc^{2}(x)
prove cos(x)=sin(pi/2-x)
prove\:\cos(x)=\sin(\frac{π}{2}-x)
prove cos(x)=sin(x)cot(x)
prove\:\cos(x)=\sin(x)\cot(x)
prove cos^2(θ/2)=(sec(θ)+1)/(2sec(θ))
prove\:\cos^{2}(\frac{θ}{2})=\frac{\sec(θ)+1}{2\sec(θ)}
prove cos^2(x)=(cos(x))^2
prove\:\cos^{2}(x)=(\cos(x))^{2}
prove 2cos^2(θ)tan(θ)=sin(2θ)
prove\:2\cos^{2}(θ)\tan(θ)=\sin(2θ)
prove sin^5(x)=(1-cos^2(x))^2sin(x)
prove\:\sin^{5}(x)=(1-\cos^{2}(x))^{2}\sin(x)
prove csc(x)sec(x)=cot(x)+tan(x)
prove\:\csc(x)\sec(x)=\cot(x)+\tan(x)
prove cos((3pi)/2-x)=-sin(x)
prove\:\cos(\frac{3π}{2}-x)=-\sin(x)
prove (cos(a))/(tan(a))=csc(a)-sin(a)
prove\:\frac{\cos(a)}{\tan(a)}=\csc(a)-\sin(a)
prove sin(x)tan(x/2)=1-cos(x)
prove\:\sin(x)\tan(\frac{x}{2})=1-\cos(x)
prove cot(t)+(sin(t))/(1+cos(t))=csc(t)
prove\:\cot(t)+\frac{\sin(t)}{1+\cos(t)}=\csc(t)
prove sin(pi+θ)=-sin(θ)
prove\:\sin(π+θ)=-\sin(θ)
prove (tan(x)cot(x))/(sin(x))=csc(x)
prove\:\frac{\tan(x)\cot(x)}{\sin(x)}=\csc(x)
prove csc^2(θ/2)=(2sec(θ))/(sec(θ)-1)
prove\:\csc^{2}(\frac{θ}{2})=\frac{2\sec(θ)}{\sec(θ)-1}
prove csc^2(x)*tan^2(x)-1=tan^2(x)
prove\:\csc^{2}(x)\cdot\:\tan^{2}(x)-1=\tan^{2}(x)
prove (1+csc(θ))/(sec(θ))=cos(θ)+cot(θ)
prove\:\frac{1+\csc(θ)}{\sec(θ)}=\cos(θ)+\cot(θ)
prove (cos(x))/(sec(2x))-(sin(x))/(csc(2x))=cos(3x)
prove\:\frac{\cos(x)}{\sec(2x)}-\frac{\sin(x)}{\csc(2x)}=\cos(3x)
prove cot(a)+(sin(a))/(1+cos(a))=csc(a)
prove\:\cot(a)+\frac{\sin(a)}{1+\cos(a)}=\csc(a)
prove sec^2(x)-cot^2(pi/2-x)=1
prove\:\sec^{2}(x)-\cot^{2}(\frac{π}{2}-x)=1
prove cos^2(x)=((1+cos(2x)))/2
prove\:\cos^{2}(x)=\frac{(1+\cos(2x))}{2}
prove sin(2x)=-2sin(-x)cos(-x)
prove\:\sin(2x)=-2\sin(-x)\cos(-x)
prove sin(θ)csc(θ)-sin^2(θ)=cos^2(θ)
prove\:\sin(θ)\csc(θ)-\sin^{2}(θ)=\cos^{2}(θ)
1
..
216
217
218
219
220
..
451