Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Trigonometry Problems
prove tan(a)cot(a)=cos^2(a)+sin^2(a)
prove\:\tan(a)\cot(a)=\cos^{2}(a)+\sin^{2}(a)
prove 1+tan^2(t)= 1/(cos^2(t))
prove\:1+\tan^{2}(t)=\frac{1}{\cos^{2}(t)}
prove (sin^2(θ))/(cos(θ))=tan(θ)sin(θ)
prove\:\frac{\sin^{2}(θ)}{\cos(θ)}=\tan(θ)\sin(θ)
prove cos^2(x)csc(x)sec(x)=cot(x)
prove\:\cos^{2}(x)\csc(x)\sec(x)=\cot(x)
prove (cos^2(-x)csc(x))/(cot(x))=cos(x)
prove\:\frac{\cos^{2}(-x)\csc(x)}{\cot(x)}=\cos(x)
prove 1+sin(2x)=(sin(x)+cos(x))^2
prove\:1+\sin(2x)=(\sin(x)+\cos(x))^{2}
prove sin^2(θ)-cos^2(θ)sin^2(θ)=sin^4(θ)
prove\:\sin^{2}(θ)-\cos^{2}(θ)\sin^{2}(θ)=\sin^{4}(θ)
prove cot(2x)=(csc^2(x)-2)/(2cot(x))
prove\:\cot(2x)=\frac{\csc^{2}(x)-2}{2\cot(x)}
prove (1+csc(θ))(1-csc(θ))=-cot^2(θ)
prove\:(1+\csc(θ))(1-\csc(θ))=-\cot^{2}(θ)
prove cot(u)tan(u)-sin^2(u)=cos^2(u)
prove\:\cot(u)\tan(u)-\sin^{2}(u)=\cos^{2}(u)
prove 1/(cos(θ))=(tan(θ))/(sin(θ))
prove\:\frac{1}{\cos(θ)}=\frac{\tan(θ)}{\sin(θ)}
prove sin(x)*tan(x)=sec(x)-cos(x)
prove\:\sin(x)\cdot\:\tan(x)=\sec(x)-\cos(x)
prove (tan(y)+cot(y))sin(y)cos(y)=1
prove\:(\tan(y)+\cot(y))\sin(y)\cos(y)=1
prove-2cos^2(x)=sin^4(x)-cos^4(x)-1
prove\:-2\cos^{2}(x)=\sin^{4}(x)-\cos^{4}(x)-1
prove sin(x)*cot(x)=cos(x)
prove\:\sin(x)\cdot\:\cot(x)=\cos(x)
prove (csc(θ)-cot(θ))(csc(θ)+cot(θ))=1
prove\:(\csc(θ)-\cot(θ))(\csc(θ)+\cot(θ))=1
prove 1+sin(x)cot(x)=1+cos(x)
prove\:1+\sin(x)\cot(x)=1+\cos(x)
prove csc(x)-sin(x)=(cot(x))(cos(x))
prove\:\csc(x)-\sin(x)=(\cot(x))(\cos(x))
prove (cos(x))/(sin(x)cot(x))=1
prove\:\frac{\cos(x)}{\sin(x)\cot(x)}=1
prove sin^2(θ)cos(θ)sec(θ)=1-cos^2(θ)
prove\:\sin^{2}(θ)\cos(θ)\sec(θ)=1-\cos^{2}(θ)
prove sin(x)=(cos(x))/(cot(x))
prove\:\sin(x)=\frac{\cos(x)}{\cot(x)}
prove tan^2(θ)-tan^2(θ)sin^2(θ)=sin^2(θ)
prove\:\tan^{2}(θ)-\tan^{2}(θ)\sin^{2}(θ)=\sin^{2}(θ)
prove tan(x)+cot(x)=cot(x)sec^2(x)
prove\:\tan(x)+\cot(x)=\cot(x)\sec^{2}(x)
prove (1+sin(z))(1-sin(z))= 1/(sec^2(z))
prove\:(1+\sin(z))(1-\sin(z))=\frac{1}{\sec^{2}(z)}
prove (tan(x))/(sec(x)+1)=csc(x)-cot(x)
prove\:\frac{\tan(x)}{\sec(x)+1}=\csc(x)-\cot(x)
prove cos^2(x)= 1/(sec^2(x))
prove\:\cos^{2}(x)=\frac{1}{\sec^{2}(x)}
prove ((1+tan(θ)))/(1+cot(θ))=tan(θ)
prove\:\frac{(1+\tan(θ))}{1+\cot(θ)}=\tan(θ)
prove 1+(cos^2(x))/(1+sin(x))=sin(x)
prove\:1+\frac{\cos^{2}(x)}{1+\sin(x)}=\sin(x)
prove sec^2(x)(1-csc^2(x))=-csc^2(x)
prove\:\sec^{2}(x)(1-\csc^{2}(x))=-\csc^{2}(x)
prove-sin^2(x)=cos^2(x)-1
prove\:-\sin^{2}(x)=\cos^{2}(x)-1
prove cos(x)+sin(x)(tan(x))=sec(x)
prove\:\cos(x)+\sin(x)(\tan(x))=\sec(x)
prove (sin(A))/(1-cos(A))-cot(A)=csc(A)
prove\:\frac{\sin(A)}{1-\cos(A)}-\cot(A)=\csc(A)
prove (cos(2x)-sin(2x))^2-1=sin(-4x)
prove\:(\cos(2x)-\sin(2x))^{2}-1=\sin(-4x)
prove cot^2(x)+1/(cos(x)sec(x))=csc^2(x)
prove\:\cot^{2}(x)+\frac{1}{\cos(x)\sec(x)}=\csc^{2}(x)
prove (1+cos(θ))/(sin(θ))=csc(θ)+cot(θ)
prove\:\frac{1+\cos(θ)}{\sin(θ)}=\csc(θ)+\cot(θ)
prove (cos(x+y)+cos(x-y))/(sin(x-y)+sin(x+y))=cot(x)
prove\:\frac{\cos(x+y)+\cos(x-y)}{\sin(x-y)+\sin(x+y)}=\cot(x)
prove tan^2(θ)=sec^2(θ)-1
prove\:\tan^{2}(θ)=\sec^{2}(θ)-1
prove (tan(x)+cot(x))^2=csc^2(x)sec^2(x)
prove\:(\tan(x)+\cot(x))^{2}=\csc^{2}(x)\sec^{2}(x)
prove (1+sec(θ))(1-sec(θ))=-tan^2(θ)
prove\:(1+\sec(θ))(1-\sec(θ))=-\tan^{2}(θ)
prove cos(x)=(cot(x))/(csc(x))
prove\:\cos(x)=\frac{\cot(x)}{\csc(x)}
prove tan(θ/2)=(sin(θ))/(1+cos(θ))
prove\:\tan(\frac{θ}{2})=\frac{\sin(θ)}{1+\cos(θ)}
prove cot(t)cos(t)=csc(t)-sin(t)
prove\:\cot(t)\cos(t)=\csc(t)-\sin(t)
prove sin((3pi)/2-x)=-cos(x)
prove\:\sin(\frac{3π}{2}-x)=-\cos(x)
prove sin(x)sec(x)= 1/(cot(x))
prove\:\sin(x)\sec(x)=\frac{1}{\cot(x)}
prove (1-cos(2x))/2 =sin^2(x)
prove\:\frac{1-\cos(2x)}{2}=\sin^{2}(x)
prove (sec(x))/(1-cos(x))=(sec(x)+1)/(sin^2(x))
prove\:\frac{\sec(x)}{1-\cos(x)}=\frac{\sec(x)+1}{\sin^{2}(x)}
prove (1-sin(x))(1+csc(x))=csc(x)-sin(x)
prove\:(1-\sin(x))(1+\csc(x))=\csc(x)-\sin(x)
prove 1-cos^2(θ)=sin^2(θ)
prove\:1-\cos^{2}(θ)=\sin^{2}(θ)
prove tan(pi/4-θ)=(cos(θ)-sin(θ))/(cos(θ)+sin(θ))
prove\:\tan(\frac{π}{4}-θ)=\frac{\cos(θ)-\sin(θ)}{\cos(θ)+\sin(θ)}
prove 2cos^2(x)+sin^2(x)=1+cos^2(x)
prove\:2\cos^{2}(x)+\sin^{2}(x)=1+\cos^{2}(x)
prove csc(B)-sin(B)=cot(B)cos(B)
prove\:\csc(B)-\sin(B)=\cot(B)\cos(B)
prove (1+sec^2(θ))/(sec^2(θ))=1+cos^2(θ)
prove\:\frac{1+\sec^{2}(θ)}{\sec^{2}(θ)}=1+\cos^{2}(θ)
prove cos(2a+a)=-3cos(a)+4cos^3(a)
prove\:\cos(2a+a)=-3\cos(a)+4\cos^{3}(a)
prove cot(2θ)= 1/2 sec(θ)csc(θ)-tan(θ)
prove\:\cot(2θ)=\frac{1}{2}\sec(θ)\csc(θ)-\tan(θ)
prove csc^2(θ)-cos(θ)sec(θ)=cot^2(θ)
prove\:\csc^{2}(θ)-\cos(θ)\sec(θ)=\cot^{2}(θ)
prove sin(x)+cos(x)=1
prove\:\sin(x)+\cos(x)=1
prove 8cos^2(x)-8sin^2(x)=8-16sin^2(x)
prove\:8\cos^{2}(x)-8\sin^{2}(x)=8-16\sin^{2}(x)
prove sec(x)-sin(x)*tan(x)=cos(x)
prove\:\sec(x)-\sin(x)\cdot\:\tan(x)=\cos(x)
prove (sec(x)csc(x))/(cot(x))=sec^2(x)
prove\:\frac{\sec(x)\csc(x)}{\cot(x)}=\sec^{2}(x)
prove (sin(θ)-cos(θ))^2=1-2sin(θ)cos(θ)
prove\:(\sin(θ)-\cos(θ))^{2}=1-2\sin(θ)\cos(θ)
prove cot(θ)sin(θ)sec(θ)=1
prove\:\cot(θ)\sin(θ)\sec(θ)=1
prove cos^4(x)=1-2sin^2(x)+sin^4(x)
prove\:\cos^{4}(x)=1-2\sin^{2}(x)+\sin^{4}(x)
prove tan(x)*cos(x)=sin(x)
prove\:\tan(x)\cdot\:\cos(x)=\sin(x)
prove cos^2(x)csc^2(x)=csc^2(x)-1
prove\:\cos^{2}(x)\csc^{2}(x)=\csc^{2}(x)-1
prove (sin(2θ))/(1+cos(2θ))=tan(θ)
prove\:\frac{\sin(2θ)}{1+\cos(2θ)}=\tan(θ)
prove (sec(x)+tan(x))/(csc(x)+1)=tan(x)
prove\:\frac{\sec(x)+\tan(x)}{\csc(x)+1}=\tan(x)
prove tan(a)=(sec(a))/(csc(a))
prove\:\tan(a)=\frac{\sec(a)}{\csc(a)}
prove sec(x)tan(x)cos(x)cot(x)=1
prove\:\sec(x)\tan(x)\cos(x)\cot(x)=1
prove 1-sec(x)cos^3(x)=sin^2(x)
prove\:1-\sec(x)\cos^{3}(x)=\sin^{2}(x)
prove sin(2x)(1-cos(2x))=4sin^3(x)cos(x)
prove\:\sin(2x)(1-\cos(2x))=4\sin^{3}(x)\cos(x)
prove cot(θ)-2cot(2θ)=tan(θ)
prove\:\cot(θ)-2\cot(2θ)=\tan(θ)
prove tan(3pi+θ)=tan(θ)
prove\:\tan(3π+θ)=\tan(θ)
prove 4sin(-x)cos(-x)=-2sin(2x)
prove\:4\sin(-x)\cos(-x)=-2\sin(2x)
prove (4sin(θ)+4cos(θ))^2=16+16sin(2θ)
prove\:(4\sin(θ)+4\cos(θ))^{2}=16+16\sin(2θ)
prove 1-sin(θ)=cos^2(θ)
prove\:1-\sin(θ)=\cos^{2}(θ)
prove 1/(sec(a)-tan(a))=sec(a)+tan(a)
prove\:\frac{1}{\sec(a)-\tan(a)}=\sec(a)+\tan(a)
prove sin(x)cos(x)=1
prove\:\sin(x)\cos(x)=1
prove sec^2(θ)-sin^2(θ)sec^2(θ)=1
prove\:\sec^{2}(θ)-\sin^{2}(θ)\sec^{2}(θ)=1
prove 9cot^2(y)(sec^2(y)-1)=9
prove\:9\cot^{2}(y)(\sec^{2}(y)-1)=9
prove sin(x)cos(x)= 1/2 sin(2x)
prove\:\sin(x)\cos(x)=\frac{1}{2}\sin(2x)
prove (tan^2(t)-1)/(sec^2(t))=(tan(t)-cot(t))/(tan(t)+cot(t))
prove\:\frac{\tan^{2}(t)-1}{\sec^{2}(t)}=\frac{\tan(t)-\cot(t)}{\tan(t)+\cot(t)}
prove 8sin(x)cos(x)=4sin(2x)
prove\:8\sin(x)\cos(x)=4\sin(2x)
prove tan(x)cos(x)-1/(csc(x))=0
prove\:\tan(x)\cos(x)-\frac{1}{\csc(x)}=0
prove sec(a)-cos(a)=sin(a)tan(a)
prove\:\sec(a)-\cos(a)=\sin(a)\tan(a)
prove (sec(x)+tan(x))(1-sin(x))=cos(x)
prove\:(\sec(x)+\tan(x))(1-\sin(x))=\cos(x)
prove sin^7(x)=(1-cos^2(x))^3sin(x)
prove\:\sin^{7}(x)=(1-\cos^{2}(x))^{3}\sin(x)
prove tan(A)+cot(A)=sec(A)csc(A)
prove\:\tan(A)+\cot(A)=\sec(A)\csc(A)
prove (sec(θ))/(csc(θ))=tan(θ)
prove\:\frac{\sec(θ)}{\csc(θ)}=\tan(θ)
prove cos(2x)+1=2cos^2(x)
prove\:\cos(2x)+1=2\cos^{2}(x)
prove tan(θ)*cos(θ)=sin(θ)
prove\:\tan(θ)\cdot\:\cos(θ)=\sin(θ)
prove csc(x)+cot(x)=(1+cos(x))/(sin(x))
prove\:\csc(x)+\cot(x)=\frac{1+\cos(x)}{\sin(x)}
prove (cos(x))/(1-sin(x))=tan(x/2-pi/4)
prove\:\frac{\cos(x)}{1-\sin(x)}=\tan(\frac{x}{2}-\frac{π}{4})
prove (sin(x))^2=sin^2(x)
prove\:(\sin(x))^{2}=\sin^{2}(x)
prove (cos(x))/(sec(x)-1)-(cos(x))/(sec(x)+1)=(2cos(x))/(tan^2(x))
prove\:\frac{\cos(x)}{\sec(x)-1}-\frac{\cos(x)}{\sec(x)+1}=\frac{2\cos(x)}{\tan^{2}(x)}
prove cot(x-y)=(cot(x)cot(y)+1)/(cot(y)-cot(x))
prove\:\cot(x-y)=\frac{\cot(x)\cot(y)+1}{\cot(y)-\cot(x)}
prove (cot(a))/(cos(a))=csc(a)
prove\:\frac{\cot(a)}{\cos(a)}=\csc(a)
prove cos(2θ)=(2-sec^2(θ))/(sec^2(θ))
prove\:\cos(2θ)=\frac{2-\sec^{2}(θ)}{\sec^{2}(θ)}
prove cos^2(x)tan^2(x)+cos^2(x)=1
prove\:\cos^{2}(x)\tan^{2}(x)+\cos^{2}(x)=1
prove (csc(θ)sin(θ))/(sec(θ))=cos(θ)
prove\:\frac{\csc(θ)\sin(θ)}{\sec(θ)}=\cos(θ)
prove tan(x)cot(x)-sin^2(x)=cos^2(x)
prove\:\tan(x)\cot(x)-\sin^{2}(x)=\cos^{2}(x)
1
..
217
218
219
220
221
..
451