Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(2x+3)^'
(2x+3)^{\prime\:}
derivative of In(x^3+x)
\frac{d}{dx}(In(x^{3}+x))
derivative of f(x)=2x^2+7x
derivative\:f(x)=2x^{2}+7x
derivative of x^4+7e^x
derivative\:x^{4}+7e^{x}
tangent of y=e^{3x},\at x= 1/3 ln(5)
tangent\:y=e^{3x},\at\:x=\frac{1}{3}\ln(5)
(\partial)/(\partial x)((5x)/(2y))
\frac{\partial\:}{\partial\:x}(\frac{5x}{2y})
integral from 0 to 1 of (e^{-0.2t})
\int\:_{0}^{1}(e^{-0.2t})dt
integral from 0 to 1 of sqrt(1+(\sqrt{2-x^2))^2}
\int\:_{0}^{1}\sqrt{1+(\sqrt{2-x^{2}})^{2}}dx
integral of arcsin(9x)
\int\:\arcsin(9x)dx
y^'+8y-6x=0
y^{\prime\:}+8y-6x=0
y^'= y/(y-x)
y^{\prime\:}=\frac{y}{y-x}
sum from n=1 to infinity of n^{-2.4}
\sum\:_{n=1}^{\infty\:}n^{-2.4}
integral of 1/(sqrt(1+y^2))
\int\:\frac{1}{\sqrt{1+y^{2}}}dy
integral from 1 to 4 of 8x-5
\int\:_{1}^{4}8x-5dx
(\partial)/(\partial x)(e^x)
\frac{\partial\:}{\partial\:x}(e^{x})
area X^2+X-12,X=0
area\:X^{2}+X-12,X=0
integral of-cos^{1/2}(3x)sin(3x)
\int\:-\cos^{\frac{1}{2}}(3x)\sin(3x)dx
(\partial)/(\partial y)(yx^{y-1})
\frac{\partial\:}{\partial\:y}(yx^{y-1})
y^{''}+6y^'+58y=0
y^{\prime\:\prime\:}+6y^{\prime\:}+58y=0
derivative of (-x^2/8)
\frac{d}{dx}(\frac{-x^{2}}{8})
integral of 1/((c^2+x^2))
\int\:\frac{1}{(c^{2}+x^{2})}dx
d/(dt)(2e^t)
\frac{d}{dt}(2e^{t})
integral of (11x^2)/((64+x^2)^2)
\int\:\frac{11x^{2}}{(64+x^{2})^{2}}dx
(\partial)/(\partial y)(-e^{-y/x})
\frac{\partial\:}{\partial\:y}(-e^{-\frac{y}{x}})
(dy)/(dx)+8y=9
\frac{dy}{dx}+8y=9
integral of xtan(2x)
\int\:x\tan(2x)dx
integral of (cos(7x))
\int\:(\cos(7x))dx
integral of tan^4(xse)c^4x
\int\:\tan^{4}(xse)c^{4}xdx
simplify t*e^{-t/2}
simplify\:t\cdot\:e^{-\frac{t}{2}}
derivative of 3x^2-6x+4
derivative\:3x^{2}-6x+4
d/(dt)(te^{at})
\frac{d}{dt}(te^{at})
(\partial)/(\partial y)(x^2y^3+2x^4y)
\frac{\partial\:}{\partial\:y}(x^{2}y^{3}+2x^{4}y)
derivative of sqrt(7-10x)
\frac{d}{dx}(\sqrt{7-10x})
integral of (sin(x))/(5+cos^2(x))
\int\:\frac{\sin(x)}{5+\cos^{2}(x)}dx
derivative of 1-|1-x|
\frac{d}{dx}(1-\left|1-x\right|)
integral of (x^4)/x
\int\:\frac{x^{4}}{x}dx
(x^2+2)^2y=(5x(y^2+1)^2)/((x^2+2)y^')-(x^4+4x^2+4)y
(x^{2}+2)^{2}y=\frac{5x(y^{2}+1)^{2}}{(x^{2}+2)y^{\prime\:}}-(x^{4}+4x^{2}+4)y
(dy)/(dx)= 1/(x^4+4x^2)
\frac{dy}{dx}=\frac{1}{x^{4}+4x^{2}}
limit as x approaches 2 of sin(1/(x-2))
\lim\:_{x\to\:2}(\sin(\frac{1}{x-2}))
limit as x approaches infinity of (4x^2+5x)/(sqrt(10+x^4))
\lim\:_{x\to\:\infty\:}(\frac{4x^{2}+5x}{\sqrt{10+x^{4}}})
3y^{''}-12y=0
3y^{\prime\:\prime\:}-12y=0
limit as x approaches 0+of 1/(x^3-2x^2)
\lim\:_{x\to\:0+}(\frac{1}{x^{3}-2x^{2}})
tangent of y=x^4+5x^2-x
tangent\:y=x^{4}+5x^{2}-x
integral of cos((npix)/2)
\int\:\cos(\frac{nπx}{2})dx
limit as x approaches 3+of (sqrt(3))/(sqrt(x)-\sqrt{3)}-2x
\lim\:_{x\to\:3+}(\frac{\sqrt{3}}{\sqrt{x}-\sqrt{3}}-2x)
derivative of ln(3x+5y)
\frac{d}{dx}(\ln(3x+5y))
derivative of 1/(4x-7)
\frac{d}{dx}(\frac{1}{4x-7})
limit as x approaches 0+of (1+tan(x))^{3/x}
\lim\:_{x\to\:0+}((1+\tan(x))^{\frac{3}{x}})
(\partial)/(\partial x)(56y^6x^6-42y^5x^5)
\frac{\partial\:}{\partial\:x}(56y^{6}x^{6}-42y^{5}x^{5})
derivative of arcsin(x+sqrt(1-x^2))
\frac{d}{dx}(\arcsin(x)+\sqrt{1-x^{2}})
derivative of f(x)=e^x-x^4
derivative\:f(x)=e^{x}-x^{4}
(\partial)/(\partial x)(-xe^x)
\frac{\partial\:}{\partial\:x}(-xe^{x})
sum from n=1 to infinity of ln(n/(2n+5))
\sum\:_{n=1}^{\infty\:}\ln(\frac{n}{2n+5})
integral of (x^2-x+6)/(x^3+3x)
\int\:\frac{x^{2}-x+6}{x^{3}+3x}dx
(\partial)/(\partial x)((x*y)/(x+y))
\frac{\partial\:}{\partial\:x}(\frac{x\cdot\:y}{x+y})
derivative of ((x^2+1/(x^2-1))^8)
\frac{d}{dx}((\frac{x^{2}+1}{x^{2}-1})^{8})
(\partial)/(\partial x)(x^5+xy^7+4)
\frac{\partial\:}{\partial\:x}(x^{5}+xy^{7}+4)
limit as x approaches-3-of 4x^2-6x+3
\lim\:_{x\to\:-3-}(4x^{2}-6x+3)
limit as x approaches 3 of (ln(3-x))/(x-2)
\lim\:_{x\to\:3}(\frac{\ln(3-x)}{x-2})
derivative of (ln(x)^{ln(x)})
\frac{d}{dx}((\ln(x))^{\ln(x)})
limit as x approaches 7 of (x+4)/(x-7)
\lim\:_{x\to\:7}(\frac{x+4}{x-7})
derivative of f(2)=(x^2-4)/(x-2)
derivative\:f(2)=\frac{x^{2}-4}{x-2}
(\partial}{\partial t}(\frac{(3r+s))/t)
\frac{\partial\:}{\partial\:t}(\frac{(3r+s)}{t})
(d^2x)/(dt^2)=-kx
\frac{d^{2}x}{dt^{2}}=-kx
derivative of (8x^2-2x(5x+9))
\frac{d}{dx}((8x^{2}-2x)(5x+9))
y^{''}-4y^'+53y=0
y^{\prime\:\prime\:}-4y^{\prime\:}+53y=0
derivative of (x^5+1^6)
\frac{d}{dx}((x^{5}+1)^{6})
limit as x approaches 5 of x/(x+1)
\lim\:_{x\to\:5}(\frac{x}{x+1})
derivative of Inbx^4
derivative\:Inbx^{4}
integral of 5e^x-3cosh(x)
\int\:5e^{x}-3\cosh(x)dx
integral of-(2x)/(x^2+1)
\int\:-\frac{2x}{x^{2}+1}dx
integral of-x^3+5x^2-4x
\int\:-x^{3}+5x^{2}-4xdx
derivative of ((sqrt(x)/3+1)^{3/2})
\frac{d}{dx}((\frac{\sqrt{x}}{3}+1)^{\frac{3}{2}})
limit as x approaches infinity of (\sqrt[3]{8x^9+x^6+2})/(4x^3+x^2-1)
\lim\:_{x\to\:\infty\:}(\frac{\sqrt[3]{8x^{9}+x^{6}+2}}{4x^{3}+x^{2}-1})
integral of cos(x)(6+4sin^2(x))
\int\:\cos(x)(6+4\sin^{2}(x))dx
(\partial)/(\partial x)(9-3x^2-y^2)
\frac{\partial\:}{\partial\:x}(9-3x^{2}-y^{2})
limit as x approaches 2 of sqrt(3-x^2)
\lim\:_{x\to\:2}(\sqrt{3-x^{2}})
sum from n=0 to infinity of 3
\sum\:_{n=0}^{\infty\:}3
y^'=ysin(2x)
y^{\prime\:}=y\sin(2x)
integral of (5x-1)(3x^3+2)
\int\:(5x-1)(3x^{3}+2)dx
(\partial)/(\partial y)(x(x+y))
\frac{\partial\:}{\partial\:y}(x(x+y))
limit as x approaches infinity of x(arctan(x)-pi/2)
\lim\:_{x\to\:\infty\:}(x(\arctan(x)-\frac{π}{2}))
derivative of f(x)=(7x^6+8x^3)^4
derivative\:f(x)=(7x^{6}+8x^{3})^{4}
4y^{''}-4y^'-3y=0,y(0)=1,y^'(0)=5
4y^{\prime\:\prime\:}-4y^{\prime\:}-3y=0,y(0)=1,y^{\prime\:}(0)=5
limit as x approaches 0+of (cot(x))^{sin(x)}
\lim\:_{x\to\:0+}((\cot(x))^{\sin(x)})
(dy)/(dt)+2(t+1)y^2=0
\frac{dy}{dt}+2(t+1)y^{2}=0
integral of 15sin^3(x)cos^2(x)
\int\:15\sin^{3}(x)\cos^{2}(x)dx
x^2(dy)/(dx)-2xy=3y^4
x^{2}\frac{dy}{dx}-2xy=3y^{4}
integral of sqrt(5/x)
\int\:\sqrt{\frac{5}{x}}dx
derivative of e^{(-x^{1/2}+1/5 x^{-3/5}})
\frac{d}{dx}(e^{(-x^{\frac{1}{2}}+\frac{1}{5}x^{-\frac{3}{5}})})
integral of 1/((x^2+100)^2)
\int\:\frac{1}{(x^{2}+100)^{2}}dx
d/(d{y)}(-9sin(3{x}+{y}{z}))
\frac{d}{d{y}}(-9\sin(3{x}+{y}{z}))
limit as x approaches 0 of (cos^2(x))/x
\lim\:_{x\to\:0}(\frac{\cos^{2}(x)}{x})
(\partial ^2)/(\partial x\partial y)(ln(4+x^2y^2))
\frac{\partial\:^{2}}{\partial\:x\partial\:y}(\ln(4+x^{2}y^{2}))
integral of 1/(x(ln(x)+ln^2(x)))
\int\:\frac{1}{x(\ln(x)+\ln^{2}(x))}dx
limit as x approaches 2 of 7
\lim\:_{x\to\:2}(7)
derivative of (2x-3)^4(x^2+x+1)^5
derivative\:(2x-3)^{4}(x^{2}+x+1)^{5}
d/(dt)(Ate^t)
\frac{d}{dt}(Ate^{t})
sum from n=1 to infinity of n/(1-7n)
\sum\:_{n=1}^{\infty\:}\frac{n}{1-7n}
derivative of (-6x/(sqrt(2x-1)))
\frac{d}{dx}(\frac{-6x}{\sqrt{2x-1}})
1
..
172
173
174
175
176
..
2459