Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
parity y=\sqrt[3]{4x^2-5}
parity\:y=\sqrt[3]{4x^{2}-5}
extreme f(x)=x^3-x^2-x+9
extreme\:f(x)=x^{3}-x^{2}-x+9
distance (1,5),(7,13)
distance\:(1,5),(7,13)
domain of f(x)=(x^2-6x)^{1/4}
domain\:f(x)=(x^{2}-6x)^{\frac{1}{4}}
domain of (x^3-x^2-2x)/(-3x^2+27)
domain\:\frac{x^{3}-x^{2}-2x}{-3x^{2}+27}
line (2,1),(5,7)
line\:(2,1),(5,7)
line m=infinity ,(3,2)
line\:m=\infty\:,(3,2)
slope of f(x)= 4/5 x-4
slope\:f(x)=\frac{4}{5}x-4
parallel y=2x-3(-6.5)
parallel\:y=2x-3(-6.5)
inverse of f(x)= 5/4 x-5/2
inverse\:f(x)=\frac{5}{4}x-\frac{5}{2}
domain of f(x)=(x^2-4)/(x+2)
domain\:f(x)=\frac{x^{2}-4}{x+2}
f(x)=sqrt(x-1)
f(x)=\sqrt{x-1}
domain of f(x)=x^2-8
domain\:f(x)=x^{2}-8
extreme f(x)=3x^2+4x-15
extreme\:f(x)=3x^{2}+4x-15
domain of f(x)=2-x
domain\:f(x)=2-x
domain of f(x)=e^xsqrt(x)
domain\:f(x)=e^{x}\sqrt{x}
amplitude of f(x)=-4sin(12x-pi/4)+3
amplitude\:f(x)=-4\sin(12x-\frac{π}{4})+3
asymptotes of f(x)=5(x+2)
asymptotes\:f(x)=5(x+2)
domain of f(x)=(sqrt(5-x))/(5+x)
domain\:f(x)=\frac{\sqrt{5-x}}{5+x}
inverse of f(x)=(x^2-9)/(4x^2),x>0
inverse\:f(x)=\frac{x^{2}-9}{4x^{2}},x>0
slope ofintercept 2x=10-3y
slopeintercept\:2x=10-3y
domain of f(x)=16x^2
domain\:f(x)=16x^{2}
slope of 2x+5y=4
slope\:2x+5y=4
inverse of f(x)=(2+sqrt((x+6)^2))/(3-x)
inverse\:f(x)=\frac{2+\sqrt{(x+6)^{2}}}{3-x}
range of f(x)=-(x+2)^2+4
range\:f(x)=-(x+2)^{2}+4
asymptotes of (x^2-9)/(x^3-2x^2-15x)
asymptotes\:\frac{x^{2}-9}{x^{3}-2x^{2}-15x}
asymptotes of f(x)=(3x^2)/(2x^2-32)
asymptotes\:f(x)=\frac{3x^{2}}{2x^{2}-32}
inverse of y=(4x-2)/(3x+1)
inverse\:y=\frac{4x-2}{3x+1}
frequency f(x)= 1/2 cos(2x)
frequency\:f(x)=\frac{1}{2}\cos(2x)
domain of f(t)=17-1.2t
domain\:f(t)=17-1.2t
domain of x^2+2x-5
domain\:x^{2}+2x-5
parity y=ln(x^4sin^2(x))
parity\:y=\ln(x^{4}\sin^{2}(x))
domain of f(x)=log_{3}(x)+6
domain\:f(x)=\log_{3}(x)+6
intercepts of 1/4 x^3-6
intercepts\:\frac{1}{4}x^{3}-6
domain of y= 3/(x-4)
domain\:y=\frac{3}{x-4}
domain of-x^2+8x-7
domain\:-x^{2}+8x-7
domain of 3/(x(x+3))
domain\:\frac{3}{x(x+3)}
domain of f(x)=3x^2+5x-1
domain\:f(x)=3x^{2}+5x-1
asymptotes of f(x)=(x^2-64)/(x+4)
asymptotes\:f(x)=\frac{x^{2}-64}{x+4}
domain of f(x)=sqrt(ln(x^2-2x-2))
domain\:f(x)=\sqrt{\ln(x^{2}-2x-2)}
inverse of f(x)=-4x
inverse\:f(x)=-4x
domain of f(x)=2-ln(-x+3)
domain\:f(x)=2-\ln(-x+3)
line (2,-9),(-7,8)
line\:(2,-9),(-7,8)
simplify (9.5)(-1.9)
simplify\:(9.5)(-1.9)
inverse of f(x)=1650(1.022)^t
inverse\:f(x)=1650(1.022)^{t}
domain of sqrt(6-x^2)
domain\:\sqrt{6-x^{2}}
critical (7x+6)/(5x^{3/5)}
critical\:\frac{7x+6}{5x^{\frac{3}{5}}}
domain of 2x^2
domain\:2x^{2}
line (-4,5),(-8,5)
line\:(-4,5),(-8,5)
line 2x+y=5
line\:2x+y=5
inverse of ((e^x))/(1+5e^x)
inverse\:\frac{(e^{x})}{1+5e^{x}}
inverse of y=sqrt(x)+2
inverse\:y=\sqrt{x}+2
parity f(x)=cos(x)
parity\:f(x)=\cos(x)
extreme f(x)=2x^3-15x^2-36x
extreme\:f(x)=2x^{3}-15x^{2}-36x
slope of 2y+x-4=0
slope\:2y+x-4=0
simplify (0.11)(12.11)
simplify\:(0.11)(12.11)
domain of f(x)=-0.01(x-20)^2+50
domain\:f(x)=-0.01(x-20)^{2}+50
range of log_{6}(x-1)-5
range\:\log_{6}(x-1)-5
inverse of f(x)=(x^7+5)/7-2
inverse\:f(x)=\frac{x^{7}+5}{7}-2
range of f(x)=2^{x-3}
range\:f(x)=2^{x-3}
critical f(x)=x^4-242x^2
critical\:f(x)=x^{4}-242x^{2}
global 14
global\:14
asymptotes of f(x)=(x^3)/((x-2)(x+1))
asymptotes\:f(x)=\frac{x^{3}}{(x-2)(x+1)}
domain of f(x)=(sqrt(5-x))+(sqrt(x^2-4))
domain\:f(x)=(\sqrt{5-x})+(\sqrt{x^{2}-4})
domain of f(x)=-3(x+1)^2-1
domain\:f(x)=-3(x+1)^{2}-1
domain of f(x)=sqrt(2x-44)
domain\:f(x)=\sqrt{2x-44}
domain of f(x)= 6/(x-4)
domain\:f(x)=\frac{6}{x-4}
inverse of f(x)=5+(4+x)^{1/2}
inverse\:f(x)=5+(4+x)^{\frac{1}{2}}
extreme f(x)=x^2+8x+6
extreme\:f(x)=x^{2}+8x+6
extreme f(x)=(e^x)/(x^2)
extreme\:f(x)=\frac{e^{x}}{x^{2}}
inverse of f(x)=-(x-4)^2+6
inverse\:f(x)=-(x-4)^{2}+6
slope of y=2x+8
slope\:y=2x+8
asymptotes of y=-cot(2x-pi/4)
asymptotes\:y=-\cot(2x-\frac{π}{4})
intercepts of (x-4)^3+6
intercepts\:(x-4)^{3}+6
domain of (2x^2-3)/5
domain\:\frac{2x^{2}-3}{5}
intercepts of f(x)=(2x+1)/(x-3)
intercepts\:f(x)=\frac{2x+1}{x-3}
inflection f(x)=4xe^{-x^2}
inflection\:f(x)=4xe^{-x^{2}}
asymptotes of (x+2)/(x+4)
asymptotes\:\frac{x+2}{x+4}
midpoint (4,-1),(7,8)
midpoint\:(4,-1),(7,8)
range of (sqrt(2+x))/(3-x)
range\:\frac{\sqrt{2+x}}{3-x}
slope of 6x-3y=18
slope\:6x-3y=18
inverse of f(x)=(x^5)/7
inverse\:f(x)=\frac{x^{5}}{7}
extreme f(x)=500+10x^2
extreme\:f(x)=500+10x^{2}
monotone f(x)=x^5-5x^3
monotone\:f(x)=x^{5}-5x^{3}
range of x^2+4
range\:x^{2}+4
inverse of f(x)=20-2x
inverse\:f(x)=20-2x
domain of f(x)=(sqrt(1-x^2))/x
domain\:f(x)=\frac{\sqrt{1-x^{2}}}{x}
domain of-2x^3+36x^2
domain\:-2x^{3}+36x^{2}
domain of f(x)= 1/(\sqrt[4]{x^2-7x)}
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-7x}}
intercepts of f(x)=-4x
intercepts\:f(x)=-4x
perpendicular y=-7x+2
perpendicular\:y=-7x+2
range of (x^2+x-12)/(x-3)
range\:\frac{x^{2}+x-12}{x-3}
domain of (3x)/((x+2)^2)
domain\:\frac{3x}{(x+2)^{2}}
symmetry y=4x^2+8x-1
symmetry\:y=4x^{2}+8x-1
intercepts of f(x)=(x+2)/(x-2)
intercepts\:f(x)=\frac{x+2}{x-2}
range of f(x)=2x^2+4x+3
range\:f(x)=2x^{2}+4x+3
domain of f(x)= 1/(sqrt(x^2-5x+6))
domain\:f(x)=\frac{1}{\sqrt{x^{2}-5x+6}}
domain of log_{3}(x-1)+3
domain\:\log_{3}(x-1)+3
amplitude of-1/5 cos(1/5 x)
amplitude\:-\frac{1}{5}\cos(\frac{1}{5}x)
critical |sin(4x)+5cos(4x)|
critical\:\left|\sin(4x)+5\cos(4x)\right|
1
..
117
118
119
120
121
..
1324