Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
dx-e^{3x}dy=0
dx-e^{3x}dy=0
(\partial)/(\partial x)(x^{6y})
\frac{\partial\:}{\partial\:x}(x^{6y})
derivative of x^2sqrt(6x-1)
\frac{d}{dx}(x^{2}\sqrt{6x-1})
integral from b to 1 of /r
\int\:_{b}^{d}\frac{1}{r}dr
tangent of f(x)=7x^3+5x,\at x=7
tangent\:f(x)=7x^{3}+5x,\at\:x=7
derivative of 3e^x(5x^5-2)
\frac{d}{dx}(3e^{x}(5x^{5}-2))
y'=sin^2(x-y)
y\prime\:=\sin^{2}(x-y)
derivative of (x^2+3^4)
\frac{d}{dx}((x^{2}+3)^{4})
derivative of 5e^{sqrt(x)}
\frac{d}{dx}(5e^{\sqrt{x}})
(\partial)/(\partial x)((3x^2+3x-1)(2x+3))
\frac{\partial\:}{\partial\:x}((3x^{2}+3x-1)(2x+3))
derivative of y=(x+5)(3sqrt(x)+8)
derivative\:y=(x+5)(3\sqrt{x}+8)
integral of ((x+1))/((x^2+2x+2)^3)
\int\:\frac{(x+1)}{(x^{2}+2x+2)^{3}}dx
(dy)/(dx)=1+y/x
\frac{dy}{dx}=1+\frac{y}{x}
derivative of y=log_{4}(x)+log_{4}(x^2)
derivative\:y=\log_{4}(x)+\log_{4}(x^{2})
derivative of sqrt(x^2-8)
\frac{d}{dx}(\sqrt{x^{2}-8})
slope of (0,2),(2,-3)
slope\:(0,2),(2,-3)
laplacetransform \delta(x)
laplacetransform\:\delta(x)
taylor x^2e^{x-1}1
taylor\:x^{2}e^{x-1}1
laplacetransform e^{-2t}
laplacetransform\:e^{-2t}
derivative of x^4-4x^3+6
\frac{d}{dx}(x^{4}-4x^{3}+6)
x^{''}-5x^'+6x=cos(t)e^{-t}
x^{\prime\:\prime\:}-5x^{\prime\:}+6x=\cos(t)e^{-t}
tangent of f(x)= 2/(x+3),\at a=-4
tangent\:f(x)=\frac{2}{x+3},\at\:a=-4
sum from n=1 to infinity of sin(n+1)
\sum\:_{n=1}^{\infty\:}\sin(n+1)
tangent of (10-x)y^2=x^3,(2,1)
tangent\:(10-x)y^{2}=x^{3},(2,1)
integral of 1/(sqrt(16x^2+4))
\int\:\frac{1}{\sqrt{16x^{2}+4}}dx
derivative of sqrt(x)+(x-6)^6
derivative\:\sqrt{x}+(x-6)^{6}
integral of sqrt(x)(x-1)
\int\:\sqrt{x}(x-1)dx
derivative of e^{2+x}-2e^x+2ex
\frac{d}{dx}(e^{2+x}-2e^{x}+2ex)
limit as x approaches pi/3 of cot(3x)
\lim\:_{x\to\:\frac{π}{3}}(\cot(3x))
(\partial)/(\partial x)(x^2e^{5xy})
\frac{\partial\:}{\partial\:x}(x^{2}e^{5xy})
derivative of-ln(1+6x)
\frac{d}{dx}(-\ln(1+6x))
(\partial)/(\partial x)(cos^n(x))
\frac{\partial\:}{\partial\:x}(\cos^{n}(x))
integral from 0.5 to 1 of 4/9 x(5-x^2)
\int\:_{0.5}^{1}\frac{4}{9}x(5-x^{2})dx
limit as x approaches 0-of-2x^2+2x
\lim\:_{x\to\:0-}(-2x^{2}+2x)
integral of 3/(x(x-3)^2)
\int\:\frac{3}{x(x-3)^{2}}dx
integral of sec^2(y)
\int\:\sec^{2}(y)dy
sum from n=1 to infinity of (8/9)^n
\sum\:_{n=1}^{\infty\:}(\frac{8}{9})^{n}
limit as x approaches 0 of (7x+x^2)/x
\lim\:_{x\to\:0}(\frac{7x+x^{2}}{x})
integral of 30(25-x^2)
\int\:30(25-x^{2})dx
tangent of f(x)=7ln(x),\at x=3
tangent\:f(x)=7\ln(x),\at\:x=3
derivative of ae^x
\frac{d}{dx}(ae^{x})
derivative of f(x)=(2x+1)(3x-2)
derivative\:f(x)=(2x+1)(3x-2)
integral from 3 to e^4 of 1/x
\int\:_{3}^{e^{4}}\frac{1}{x}dx
area y=ln(x),y=0,x=e
area\:y=\ln(x),y=0,x=e
integral of cos(2)(x)
\int\:\cos(2)(x)dx
integral of (8+u)
\int\:(8+u)du
(dy)/(dx)+4y=7
\frac{dy}{dx}+4y=7
(dx)/(dx)
\frac{dx}{dx}
limit as x approaches 2 of x^2-1
\lim\:_{x\to\:2}(x^{2}-1)
integral of tan^5(x)sec^7(x)
\int\:\tan^{5}(x)\sec^{7}(x)dx
derivative of e^{x^2+y^2}
\frac{d}{dx}(e^{x^{2}+y^{2}})
integral of x/(sqrt(x^2-100))
\int\:\frac{x}{\sqrt{x^{2}-100}}dx
derivative of A*e^{-2x}*x
\frac{d}{dx}(A\cdot\:e^{-2x}\cdot\:x)
integral of (x^{3/2}+8x+2)
\int\:(x^{\frac{3}{2}}+8x+2)dx
derivative of 2arctan(3x-ln(2+3x))
\frac{d}{dx}(2\arctan(3x)-\ln(2+3x))
integral from 3 to 6 of 1/(sqrt(36-x^2))
\int\:_{3}^{6}\frac{1}{\sqrt{36-x^{2}}}dx
derivative of f(t)=ln(cos(t))
derivative\:f(t)=\ln(\cos(t))
tangent of f(x)=e^xcos(x),(0,1)
tangent\:f(x)=e^{x}\cos(x),(0,1)
(\partial)/(\partial x)(ln(7x^2+y^2+6))
\frac{\partial\:}{\partial\:x}(\ln(7x^{2}+y^{2}+6))
derivative of 8x^3
derivative\:8x^{3}
xy^'+2y=-2e^x
xy^{\prime\:}+2y=-2e^{x}
limit as x approaches-3 of 7/(x+3)
\lim\:_{x\to\:-3}(\frac{7}{x+3})
y^'=t^2-y
y^{\prime\:}=t^{2}-y
derivative of arccos(3/x)
\frac{d}{dx}(\arccos(\frac{3}{x}))
7y^{''}+4y^'=0
7y^{\prime\:\prime\:}+4y^{\prime\:}=0
integral of (t^2+2)^3
\int\:(t^{2}+2)^{3}dt
d/(dt)(6sin(t))
\frac{d}{dt}(6\sin(t))
tangent of y=4x^2
tangent\:y=4x^{2}
limit as x approaches-2 of (x^2-1)(7x+3)
\lim\:_{x\to\:-2}((x^{2}-1)(7x+3))
inverse oflaplace 1/(s^2(s-1))
inverselaplace\:\frac{1}{s^{2}(s-1)}
integral of (3e^x+5sec^2(x))
\int\:(3e^{x}+5\sec^{2}(x))dx
(\partial)/(\partial y)((2y)/(x+z))
\frac{\partial\:}{\partial\:y}(\frac{2y}{x+z})
derivative of 8(x^3-x^4)
\frac{d}{dx}(8(x^{3}-x)^{4})
derivative of f(x)=1.58e^{-0.213x}
derivative\:f(x)=1.58e^{-0.213x}
derivative of f(x)=(4x)/(e^x)
derivative\:f(x)=\frac{4x}{e^{x}}
derivative of sqrt(35x)ln(20x)
derivative\:\sqrt{35x}\ln(20x)
integral of (15x^{-2}-5x)cos(6x^{-1}+x^2)
\int\:(15x^{-2}-5x)\cos(6x^{-1}+x^{2})dx
integral of 2^s
\int\:2^{s}ds
(dy)/(dx)=y-3
\frac{dy}{dx}=y-3
y^{''}-10y^'+y=0
y^{\prime\:\prime\:}-10y^{\prime\:}+y=0
integral of (24y-14)/(6y^2-7y)
\int\:\frac{24y-14}{6y^{2}-7y}dy
inverse oflaplace 1/(s(s+1))-1/(s+1)
inverselaplace\:\frac{1}{s(s+1)}-\frac{1}{s+1}
integral of 1/(x^2)sqrt(6+1/x)
\int\:\frac{1}{x^{2}}\sqrt{6+\frac{1}{x}}dx
limit as x approaches 0 of cot(4x)
\lim\:_{x\to\:0}(\cot(4x))
derivative of (2x^2-1/(x^3-x))
\frac{d}{dx}(\frac{2x^{2}-1}{x^{3}-x})
derivative of 1/(2sqrt(r))+1/(9r^{(8/9))}
derivative\:\frac{1}{2\sqrt{r}}+\frac{1}{9r^{(\frac{8}{9})}}
limit as x approaches 0 of 1/(3x^3)
\lim\:_{x\to\:0}(\frac{1}{3x^{3}})
y^{''}-2y^'+y=t^{sqrt(3)}e^t
y^{\prime\:\prime\:}-2y^{\prime\:}+y=t^{\sqrt{3}}e^{t}
derivative of 4x^2cos(3x)
\frac{d}{dx}(4x^{2}\cos(3x))
y^{''}-4y^'+4y=xe^{2x}
y^{\prime\:\prime\:}-4y^{\prime\:}+4y=xe^{2x}
derivative of (1+x+x^2^{99})
\frac{d}{dx}((1+x+x^{2})^{99})
(\partial)/(\partial u)((u^2+v^2)^{3/2})
\frac{\partial\:}{\partial\:u}((u^{2}+v^{2})^{\frac{3}{2}})
limit as x approaches 4-of 1/(x-4)
\lim\:_{x\to\:4-}(\frac{1}{x-4})
integral of (x^2-1)^{-1}
\int\:(x^{2}-1)^{-1}dx
implicit x^2+2y^2=2
implicit\:x^{2}+2y^{2}=2
area x^2+x-2,[-3,4]
area\:x^{2}+x-2,[-3,4]
integral from 1 to 2 of 3x^4ln(x)
\int\:_{1}^{2}3x^{4}\ln(x)dx
(\partial)/(\partial x)(y/z)
\frac{\partial\:}{\partial\:x}(\frac{y}{z})
derivative of x^3-5/x+4
\frac{d}{dx}(x^{3}-\frac{5}{x}+4)
integral of 2/(3\sqrt[3]{t)}-3/(1+t^2)
\int\:\frac{2}{3\sqrt[3]{t}}-\frac{3}{1+t^{2}}dt
1
..
122
123
124
125
126
..
2459